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PREFACE

These notes are based on a series of lectures given in the
Lefschetz Center for Dynamical Systems in the Division of Applied
Mathematics at Brown University during the academic year 1978-79.

The purpose of the lectures was to give an introduction to the
applications of centre manifold theory to differential equations.
Most of the material is presented in an informal fashion, by means
of worked examples in the hope that this clarifies the use of centre
manifold theory.

The main application of centre manifold theory given in these
notes is to dynamic bifurcation theory. Dynamic bifurcation theory
is concerned with topological changes in the nature of the solutions
of differential equations as parameters are varied. Such an example
is the creation of periodic orbits from an equilibrium point as a
parameter crosses a critical value. In certain circumstances, the
application of centre manifold theory reduces the dimension of the
system under investigation. In this respect the centre manifold
theory plays the same role for dynamic problems as the Liapunov-
Schmitt procedure plays for the analysis of static solutions.

In order to make these notes more widely accessible, we give
a full account of centre manifold theory for finite dimensional
systems. Indeed, the first five chapters are devoted to this. Once
the finite dimensional case is understood, the step up to infinite
dimensional problems is essentially technical. Throughout these notes

we give the simplest such theory, for example our equations are

autonomous. Once the core of an idea has been understood in a simple
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setting, generalizations to more complicated situations are much more
readily understood.

In Chapter 1, we state the main results of centre manifold
theory for finite dimensional systems and we illustrate their use by
a few simple examples. In Chapter 2, we prove the theorems which were
stated in Chapter 1, and Chapter 3 contains further examples. In
Section 2 of Chapter 3 we outline Hopf bifurcation theory for
2-dimensional systems. In Section 3 of Chapter 3 we apply this theory
to a singular perturbation problem which arises in biology. In
Example 3 of Chapter 6 we apply the same theory to a system of partial
differential equations. In Chapter 4 we study a dynamic bifurcation
problem in the plane with two parameters. Some of the results in this
Chapter are new and, in particular, they confirm a conjecture of
Takens [49]. Chapter 4 can be read independently of the rest of the
notes. In Chapter 5, we apply the theory of Chapter 4 to a 4-dimensional
system. In Chapter 6, we extend the centre manifold theory given in
Chapter 2 to a simple class of infinite dimensional problems. Finally,
we illustrate their use in partial differential equations by means of
some simple examples.

I first became interested in centre manifold theory through
reading Dan Henry's Lecture Notes [30]. My debt to these notes is
enormous. I would like to thank Jack K. Hale, Dan Henry and
John Mallet-Paret for many valuable discussions during the gestation
period of these notes. In addition, my thanks go to Sandra Spinacci
for converting my manuscript into this elegant typescript.

This work was done with the financial support of the United States
Army, Durham, under AROD DAAG 29-76-G0294.

June 1979 Jack Carr
Providence, Rhode Island
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CHAPTER 1
INTRODUCTION TO CENTRE MANIFOLD THEORY

1.1. Introduction

In this chapter we state the main results of centre manifold
theory for finite dimensional systems and give some simple examples

to illustrate their application.

1.2. Motivation
To motivate the study of centre manifolds we first look at a

simple example. Consider the system
X = ax”, y = -y + y“, £1.2.1)

where a 1is a constant. Since the equations are uncoupled we can
easily show that the zero solution of (1.2.1) is asymptotically

stable if and only if a < 0. Suppose now that
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Since the equations are coupled we cannot immediately decide if the
zero solution of (1.2.2) is asymptotically stable, but we might
suspect that it is if a < 0. The key to understanding the relation
of equation (1.2.2) to equation (1.2.1) is an abstraction of the

idea of uncoupled equations.
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be an invariant manifold for the system of differential equations

x = f(x,y), Yy = g(x,y), (1.2.3)

A curve, say y = h(x), defined for |x| small, is said to '

if the solution x(t),y(t) of (1.2.3) through (x,,h(x,)) lies {
on the curve y = h(x) for small t, i.e., y(t) = h(x(t)). Thus,

for equation (1.2.1), y = 0 1is an invariant manifold. Note that

in deciding upon the stability of the zero solution of (1.2.1), the

3

only important equation is x = ax~, that is we only need study a

first order equation on a particular invariant manifold.

The theory that we develop tells us that equation (1.2.3) has
an invariant manifold y = h(x), |x| small, with h(x) = O(xz) as
x » 0. Furthermore, the asymptotic stability of the zero solution
of (1.2.2) can be proved by studying a first order equation. This

equation is given by

an® + u*hiu) = au’ + oYy, (1.2.4)

u

and we see that the zero solution of (1.2.4) is asymptotically stable

if a < 0 and unstable if a > 0. This tells us that the zero ‘

solution of (1.2.2) is asymptotically stable if a < 0 and un-

stable if a > 0 as we expected. }

We are also able to use this method to obtain estimates for

the rate of decay of solutions of (1.2.2) in the case a < 0. For

example, if x(t),y(t) is a solution of (1.2.2) with x(0),y(0) 2




small, we prove that there is a solution wu(t) of (1.2.4) such

that x(t) = u(t)(l+o(1)), y(t) = h(u(t))(1+o(l)) as t +» =,

1.3. Centre Manifolds

We first recall the definition of an invariant manifold for

the equation

x = N{x) {1.3.1)

n

where x € R". A set S c R is said to be a local invariant

] manifold for (1.3.1) if for X € S, the solution x(t) of (1.3.1)

with x(0) = xg is in S for |t]| <T where T > 0. If we can

always choose T = =, then we say that S 1is an invariant manifold.

Consider the system

e
#

Ax + f(x,y)

(1.3.2)
By + g(x,y)

B
L]

where x €]Rn, y €R™ and A and B are constant matrices such
that all the eigenvalues of A have zero real parts while all the
eigenvalues of B have negative real parts. The functions f and
g are C? with £(0,0) = 0, £'(0,0) = 0, g(0,0) = 0, g'(0,0) = 0
(f' 1is the Jacobian matrix of f).

If f and g are identically zero then (1.3.2) has two
obvious invariant manifolds, namely x = 0 and y = 0. The in-
variant manifold x = 0 1is called the stable manifold, since if we
restrict initial data to x = 0, all solutions tend to zero. The

invariant manifold y = 0 is called the centre manifold.

J | : - '




In general, if y = h(x) 1is an invariant manifold for (1.3.2)

n

and h is smooth, then it is called a centre manifold if h(0) 0,

h'(0) = 0. We use the term centre manifold in place of local
centre manifold if the meaning is clear.
If £ and g are identically zero, then all solutions of

(1.3.2) tend exponentially fast, as t + o, to solutions of

X = Ax, {1.35.3)

that is, the equation on the centre manifold determines the
asymptotic behavior of solutions of the full equation modulo
exponentially decaying terms. We now give the analogue of these
results when f and g are non-zero. These results are proved

in Chapter 2.

Theorem 1. There exists a centre manifold for (1.3.2), v = h(x),
)
[x|] < &, where h is C°.
The flow on the centre manifold is governed by the
n-dimensional system
u = Au + f(u,h(u)) (1.3.4)

which generalizes the corresponding problem (1.3.3) for the linear
case. The next theorem tells us that (1.3.4) contains all the
necessary information needed to determine the asymptotic behavior

of small solutions of (1.3.2).
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Suppose that the zero solution of (1.3.4) is stable

Theorem 2 (a)

(asymptotically stable) (unstable). Then the zero solution of

(1.3.2) is stable (asymptotically stable) (unstable).

(b) is stable.
Let (x(t),y(t)) be a solution of (1.3.2) with (x(0),y(0))

of (1.3.4)

Suppose that the zero solution of (1.3.4)

T —

Then there exists a solution

sufficiently small. u(t)

such that as t -+ =

x(t) = u(t) + o(e’ 'Y

y(t) = h(u(t)) + o(e 'Y

where Y > 0 1s a constant.

If we substitute y(t) = h(x(t)) into the second equation

in (1.3.2) we obtain

h' (x) [Ax + f(x,h(x))] = Bh(x) + g(x,h(x)). (1.3.0) 7;

=0, h'(0) =0

Equation (1.3.6) together with the conditions h(0)

is the system to be solved for the centre manifold. This is

impossible, in general, since it is equivalent to solving (1.3.2).

The next result however, shows that in principle, the centre mani-

fold can be approximated to any degree of accuracy.

For functions ¢: R"™ + R™ which are Cl in a neighborhood

of the origin define

(MP) (x) = @' (x)[AXx + f£(x,9(x))] - BP(x) - g(x,9(x)).




Note that by (1.3.6), (Mh)(x) = 0.

Theorem 3. Let ¢ be a C1 mapping of a neighborhood of the
origin in R™ into R™ with ¢(0) = 0 and ¢'(0) = 0. Suppose
that as x -~ 0, (M$)(x) = 0(\x\q) where q > 1. Then as x » 0,

lh(x) - ¢(x)| = o(|x|D.

1.4. Examples

We now consider a few simple examples to illustrate the use

of the above results.

Example 1. Consider the system

e
n

Xy + ax3 + byzx
(1.4.1)

L cx2 + dxzy.

.
1}

By Theorem 1, equation (1.4.1) has a centre manifold y = h(x). To

approximate h we set

(M) (x) = ' (x)[x0(x) *+ ax> + bxd(x)] + 0(x) - cx® - dx%6(x).

g

7 —
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If ¢(x) = O(xz) then (M¢)(x) = ¢(x) - cx2 + O(x4). Hence, if
P(x) = cxz, (M¢) (x) = 0(x4), so by Theorem 3, h(x) = cx2 + 0(x4).
By Theorem 2, the equation which determines the stability of the

zero solution of (1.4.1) is

4= uh(u) + au> + buh®(u) = (a+c)u’ + o(ud).

Thus the zero solution of (1.4.1) is asymptotically stable if

a +c <0 and unstable if a + ¢ > 0. If a +c =0

then we

have to obtain a better approximation to h.

Suppose that a + c = 0. Let ¢(x) = cx2 + Y(x) where

v(x) = 0(x*). Then M)(x) = v(x) - cdx? + 0(x®). Thus, if

P(x) = cx2 + cdx4 then (M9)(x) = O(x6) so by Theorem 3,

h(x) = cxZ + cdx4 + 0(x6). The equation that governs the stability

of the zero solution of (1.4.1) is

3

u = uh(u) + au” + buhz(u) = (cd+bc2)u5 + 0(u7).

Hence, if a + c = 0, then the zero solution of (1.4.1) is
asymptotically stable if «cd + bc2 < 0 and unstable if

cd + bc2 > 0. If cd #+ bc2 = 0 then we have to obtain a better

approximation to h (see Exercise 1).




Exercise 1. Suppose that a + ¢ = cd + bc2 = 0 in Example 1.

Show that the equation which governs the stability of the zero

-cdzu7

solution of (1.4.1) is o = + o(uY).

Exercise 2. Show that the zero solution of (1.2.2) is asymptotically

stable if a < 0 and unstable if a > 0.

Exercise 3. Suppose that in equation (1.3.2), n =1 so that A = 0.

Suppose also that f(x,y) = axP + 0(|x|p+1 + |y|q) where 2q > p + 1

and a is non-zero. Show that the zero solution of (1.3.2) is

asymptotically stable if a < 0 and p 1is odd, and unstable

otherwise.

Consider the system

Example 2.

X = ex - xO Xy ‘ “

y
where ¢

of (1.4.2) for small

P e

is a real parameter.

bel.

2

The object is to study small solutions

X

2

(1.4.2)

.-
=




The linearized problem corresponding to (1.4.2) has eigenvalues
-1 and €. This means that the results given in Section 3 do not
apply directly. However, we can write (1.4.2) in the equivalent

form

X = Ex - x3 + Xy
Fou gyt - % (1.4.3)
€ =0

When considered as an equation on ]R3 the €x term in (1.4.3) is
nonlinear. Thus the linearized problem corresponding to (1.4.3) has
eigenvalues -1,0,0. The theory given in Section 3 now applies so
that by Theorem 1, (1.4.3) has a two dimensional centre manifold

y = h(x,€), |x| < 81» le] < §,. To find an approximation to h

set

(M9) (x,€) = ¢ (x,€) [ex-x>+x0 (x,€)] + 0 (x,€) + x* - o (x,€).
Then, if ¢ (x) = -xz, (M) (x,€) = 0(C(x,€)) where C 1is a homo-
geneous cubic in x and €. By Theorem 3, h(x,€) = -x2 + 0(C(x,€)).

Note also that h(0,€) = 0 (see Section 2.6). By Theorem 2 the

equation which governs small solutions of (1.4.3) is

0= ey - 2ud e 0(|uC(u,e))
: (1.4.4;
€= 0,

The zero solution (u,€) = (0,0) of (1.4.4) is stable for small €
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so the representation of solutions given by Theorem 2 applies here.
For -62 < € < 0 the solution u = 0 of the first equation in
(1.4.4) is asymptotically stable and so by Theorem 2 the zero solution
of (1.4.2) is asymptotically stable.

For 0 < € < 62, solutions of the first equation in (1.4.4)
consist of two orbits connecting the origin to two small fixed
points. Hence, for 0 < € < 62 the stable manifold of the origin
for (1.4.2) forms a separatrix, the unstable manifold consisting of

two stable orbits connecting the origin to the fixed points.

Exercise 4. Study the behavior of all small solutions of

Weweew+sw =0 for small e,

Example 3. Consider the equations

-y + (y+*c)z

K.
"

(1.4.5)

€z =y - (y+1)z

where € > 0 1is small and 0 < c¢c < 1. The above equations arise
from a model of the kinetics of enzyme reactions [29]. If € = 0,
then (1.4.5) degenerates into one algebraic equation and one

differential equation. Solving the algebraic equation we obtain

z = ;%r (1.4.6)

and substituting this into the first equation in (1.4.5) leads to

the equation




<18 .

y = -1%’- (1.4.7)
where X =1 - c.

Using singular perturbation techniques, it was shown in [29]
that for € sufficiently small, under certain conditions, solutions
of (1.4.5) are close to solutions of the degenerate system (1.4.6),
(1.4.7). We shall show how centre manifolds can be used to obtain
a similar result.

Let t = €T, We denote differentiation with respect to t by

and differentiation with respect to T by '. Equation (1.4.5)

can be rewritten in the equivalent form

y' = ef(y,w)
w' = -w + yz - YW + Ef(y,W) (1.4.8)
e' =0

where f(y,w) = -y + (y+c)(y-w) and w =1y - z. By Theorem 1,
(1.4.8) has a centre manifold w = h(y,€¢). To find an approximation

to h set
(M) (7,€) = €0, (y,€)E(y,0) * h(y,) = y* + yh(y,e) - €£(y,W).

If ¢(y,s) = yz - Aey then (M$)(y,e) = O(|y|3+|s|3) so that by

Theorem 3,

hiy,e) = y2 - xey + o(ly| +lel®).
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By Theorem 2, the equation which determines the asymptotic behavior

of small solutions of (1.4.8) is
u' = €f(u,h(u,t))
or in terms of the original time scale
G = f(u,h(u,€)) = -A(u-ud) + o(leul+jul’). (1.4.9)

Again, by Theorem 2, if € is sufficiently small and y(0),z(0) are
sufficiently small, then there is a solution wu(t) of (1.4.9) such

that

y(t) = u(t) + 0(e /%)

(1.4.10)

z(t) = y(t) - h(y(t),c) * O(e't/a).

Note that equation (1.4.7) is an approximation to the equation on
the centre manifold. Also, from (1.4.10) z(t) = y(t) - yz(t),
which shows that (1.4.6) is approximately true.

The above results are not satisfactory since we have to assume
that the initial data is small. In Chapter 2, we show how we can
deal with more general initial data. Here we briefly indicate the
procedure involved there. If Yo # -1, then

1

(VoW ) = (Yg.ye(leyg) ' L,0)

is a curve of equilibrium points for (1.4.8). Thus, we expect that




{
[

=1 %=

there is an invariant manifold w = h(y,€) for (1.4.8) defined

for € small and 0 <y <m, (m = 0(1)), and with h(y,€) close

to the curve

w = yiaiey)'L, (1.4.11)

For initial data close to the curve given by (1.4.11), the stability

properties of (1.4.8) are the same as the stability properties of the

reduced equation
u = f(u,h(u,e€)).

1.5. Bifurcation Theory

Consider the system of ordinary differential equations

w = F(w,€)
(1.5.1)
F(0,€) = 0

where w € R™™ and ¢ s a p-dimensional parameter. We say that
€ =0 1is a bifurcation point for (1.5.1) if the qualitative nature
of the flow changes at € = 0, that is, if in any neighborhood of

€ = 0 there exist points € and ¢

local phase portraits of (l.S.l)C and (1.5.1)e are not topologically
1 2

; such that the corresponding

equivalent.

Suppose that the linearization of (1.5.1) about w = 0 is
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w = C(t)w. (1.5.2)

[f the eigenvalues of C(0) all have non-zero real parts then,
for small |€|, small solutions of (1.5.1) behave like solutions
of (1.5.2) so that € = 0 1is not a bifurcation point. Thus, from
the point of view of local bifurcation theory the only interesting
situation is when C(0) has eigenvalues with zero real parts.

Suppose that C(0) has n eigenvalues with zero real parts

and m eigenvalues whose real parts are negative. We are assuming

that C(0) does not have any positive eigenvalues since we are

interested in the bifurcation of stable phenomena.

Because of our hypothesis about the eigenvalues of C(0) we

can rewrite (1.5.1) as

x = Ax + f(x,y,€)
y = By + g(x,y,¢) (1.5.3)
=0

n m ’ g :
where x € R, y € R", A is an n X n matrix whose eigenvalues

all have zero real parts, B is an m X m matrix whose eigenvalues

all have negative real parts, and f and g vanish together with

each of their derivatives at (x,y,€) = (0,0,0).

By Theorem 1, (1.5.3) has a centre manifold y = h(x,e€),

[x| < &, je] < 6,. By Theorem 2 the behavior of small solutions

of (1.5.3) is governed by the cquation

o TR S A AT AOE T TTaea T e
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U= Au + f(u,h(u),€)

; (1.5.4)
€ = 0.

In applications n is frequently 1 or 2 so this is a very useful
reduction. The reduction to a lower dimensional problem is
analogous to the use of the Lyapunov-Schmidt procedure in the
analysis of state problems. For the relationship between centre
manifold theory and other perturbation techniques such as amplitude

expansions, see [12].

1.6. Comments on the Literature

Theorems 1-3 are the simplest such results in centre manifold
theory and we briefly mention some of the possible generalizations.
(1) The assumption that the eigenvalues of the linearized

problem all have non-positive real parts is not necessary.

(2) The equations need not be autonomous.

(3) In certain circumstances we can replace 'equilibrium
point' by 'invariant set'.

(4) Similar results can be obtained for certain classes of
infinite-dimensional evolution equations, such as partial differ-
ential equations. ]

There is a vast literature on invariant manifold theory
(1,6,18,19,23,24,26,28,30,31,36,37,38,40,42}. For applications of
invariant manifold theory to bifurcation theory see [1,12,13,14,15,
20,27,30,32,33,34,39,40,41,42,45,50). For a simple discussion of

stable and unstable manifolds see [18, Chapter 13] or [23, Chapter 3].




o
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In Chapter 2 we prove Theorems 1-3. Our proofs of Theorems 1
and 2 are modelled on Kelly (37,38]. Theorem 3 is a special case of
a result of Henry [30] and our proof follows his. Throughout
Chapter 2 we use methods that generalize to infinite dimensional

problems in an obvious way.




W___W" s a—

Ty
i Bidunyd

CHAPTER 2
PROOFS OF THEOREMS

2.1. Introduction

In this chapter we give proofs of the three main theorems

stated in Chapter 1. The proofs are essentially applications of

the contraction mapping principle. The procedure used for defining

the mappings is rather involved, so we first give a simple example
to help clarify the technique. The proofs that we give can easily
be extended to the corresponding infinite dimensional case; indeed
essentially all we have to do is to replace the norm |*] in finite

dimensional space by the norm || ]| in a Banach space.

2.2. A Simple Example

We consider a simple example to illustrate the method that we
use to prove the existence of centre manifolds.

Consider the system

il = iz, iz =0, Y= -y« g(xl,xz), (2.2.1})

where g 1is smooth and g(xl,xz) = O(x§+x§) as (xl,xz) + (0,0).
We prove that (2.2.1) has a local centre manifold.

Let ¢:R® 4R be a C® function with compact support such
that w(xl.xz) =1 for (xl,xz) in a neighborhood of the origin.

D i ) ' - .
efine G by C(xl.xz) w(xl,xz)g(xl,xz) We prove that the

system of equations
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il = Xy, *2 =0, y= -y + G(xl,xz), (2.2.2)

has a centre manifold y = h(xl,xz), (xl,xz) GiRZ. Since

G(xl,xz) = g(xl,xz) in a neighborhood of the origin, this proves

that y = h(xl,xz), x% + xg < § for some &6, is a local centre

e ——

manifold for (2.2.1).
The solution of the first two equations in (2.2.2) is

xl(t) -5t zzt, xz(t) = 2,, where xi(O) = 2z If

i
y(t) = h(xl(t),xz(t)) is a solution of the third equation in (2.2.2)

then

d
It h(zl*zzt,zz) = -h(zl+zzt,zz) + G(zl+zzt,zz). (2.2.3)

To determine a centre manifold for (2:2.2) we must single out a

special solution of (2.2.3). Since G(xl,xz) is small for all Xy

and Xy solutions of the third equation in (2.2.2) behave 1like

solutions of the linearized equation y = -y. The general solution

of (2.2.2) therefore contains a term like e't. As t » «,  this

component approaches the origin perpendicular to the 2152, plane.
Since the centre manifold is tangent to the z,,2, Pplane at the

origin we must eliminate the et component, that is we must

ﬁ‘ eliminate the component that approaches the origin along the stable
manifold as t + ». To do this we solve (2.2.3) together with the

condition

I , t
E iiTm h(zl+zzt,zz)e = 0, (2.2.4)
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Integrating (2.2.3) between -« and 0 and using (2.2.4)

we obtain
0 s
h(zl,zz) = [_me G(zl+zzs,z2)ds.
By construction, y = h(zl,zz) is an invariant manifold for (2.2.2).
Using the fact that G has compact support and that G(xl,xz) has

a second order zero at the origin it follows that h(zl,z,) has a

second order zero at the origin,that is h 1is a centre manifold.

2.3. Existence of Centre Manifolds

In this section we prove that the system

e
L]

Ax + f(x,y)
{(2.31)
By + g(x,y)

e
"

has a centre manifold. As before «x elR“, y € mm, the eigenvalues
of A have zero real parts, the eigenvalues of B have negative
real parts and f and g are C2 functions which vanish together

with their derivatives at the origin.

Theorem 1. Equation (2.3.1) has a local centre manifold
2

y = h(x), |x| < &, where h is C
Proof. As in the example given in the previous section, we prove

the existence of a centre manifold for a modified equation. Let

v: R" [0,1) be a C” function with w(x) = 1 when Ix|] <1
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and y(x) = 0 when |x| > 2. For € > 0 define F and G by

F(x,y) = £(x¥(3),¥), G(x,y) = g(xv(3),y).

The reason that the cut-off function ¥ 1is only a function of x
is that the proof of the existence of a centre manifold generalizes
in an obvious way to infinite dimensional problems.

We prove that the system

e
]

Ax + F(x,y)

By * Gf{x,¥)

(2.5.2)

e
n

has a centre manifold y = h(x), x E]Rn, for small enough €. Since
F and G agree with f and g in a neighborhood of the origin,
this proves the existence of a local centre manifold for (2.3.1).

For p > 0 1let X be the set of Lipschitz functions

h: R" > R™ with Lipschitz constant p, |hix)| < p for x € R"
and h(0) = 0. With the supremum norm ||-||, X 1is a complete
space.

For h € X and X, €]Rn, let x(t,xo,h) be the solution of

x = Ax + F(x,h(x)), x(O,xO,h) (2:3.3)

5 XO.

The bounds on F and h ensure that the solution of (2.3.3) exists

for all t. We now define a new function Th by

0
(Th) (xy) = f e‘BSc(x(s,xO,h),h(x(s,xo,h)))ds. (2. 508
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If h is a fixed point of (2.3.4) then h 1is a centre manifold

for (2.3.2). We prove that for p and € small enough, T is a
contraction on X.
Using the definitions of F and G, there is a continuous

function k(€) with k(0) = 0 such that

[E(x,y)| + |G(x,y)]| < k(¢€),
[BLx,7) -~ Fix',y*)} < k(e}fix-x*| * |[y-y*'11, €2.3.5)
|G(x,y) - G(x',y')| < k(e)[|x-x"| + |y-y'|],

for all x, x' € R" and all vy, y' € R® with |y], [t = =
Since the eigenvalues of B all have negative real parts,
there exist positive constants B8,C such that for s < 0 and

y €R",
le By < CeBSIyI. (2.3.6)
Since the eigenvalues of A all have zero real parts, for each

r > 0 there is a constant M(r) such that for x € R" and

s €1R,
lefSx| < M(rye!s!x]. (2.5.7)

Note that in general, M(r) + » as r + 0.

If p < €, then we can use (2.3.5) to estimate terms involving

G(x(s,xo,h),h(s,xo,h)) and similar terms. We shall suppose that

p < € from now on.

T T T W O - AT S At A ST T T et A - T i
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If X €1R", then using (2.3.6) and the estimates on G and
h, we have from (2.3.4) that

IThix) | < c8lk(e). (2.3.8)

Now let Xgs Xy € R". Using (2.3.7) and the estimates on F

and h, we have from (2.3.3) that for r > 0 and t < 0,

|x(t,x0,h) - x(t,xl,h)| < M(r)e-rt|x -X

0%l

0
+ 2M(r)k(€) f

er(s't)lx(s,xo,h) - x(s,xq,h)|ds.
t

By Gronwall's inequality, for t < 0,

|x(t,xg,h) - x(t,x),h)| < M(r)|x;-x,le” ", (2.3.9)

where Y = r + 2M(r)k(e¢). Using (2.3.9) and the bounds on G
h, we obtain from (2.3.4)

and

ITh(xy) - Th(x)| < CM(r) + pIk() (B-) " Hxyx, ] (2.3.10)

if € and r are small enough so that g > Y.

Similarly, if hl’ h2 € X and X €]Rn, we obtain

Ty (x) - Thy(x)] < ck(e)r L0 "L pamnk? (o) + 1] |lhy-hy |l (2.3.11)

MG el .
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By a suitable choice of p,e€ and r, we see from (2.3.8),
(2.3.10) and (2.3.11) that T 1is a contraction on X. This proves
the existence of a Lipschitz centre manifold for (2.3.2). To prove

that h is C1 we show that T is a contraction on a subset of X

consisting of Lipschitz differentiable functions. The details are
similar to the proof given above so we omit the details. To prove

2

that h 13 C we imitate the proof of Theorem 4.2 on page 333

of [18].

2.4. Reduction Principle

The flow on the centre manifold is governed by the n-dimensional

system

u = Au + f(u,h(u)). (2.4.1)

In this section we prove a theorem which enables us to relate the
asymptotic behavior of small solutions of (2.3.1) to solutions of 14
(2.4.1).

We first prove a lemma which describes the stability properties

of the centre manifold.

Lemma 1. Let (x(t),y(t)) be a solution of (2.3.2) with | (x(0),y(0))|

sufficiently small. Then there exist positive C1 and u such that

ly(t) - h(x(e)] < ¢ e™ y(0) - h(x(0))]

for all t > 0.
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Proof. Let (x(t),y(t)) be a solution of (2.3.2) with (x(0),y(0))

sufficiently small. Let z(t) = y(t) - h(x(t)), then by an easy

computation

z = Bz + N(x,z) {2.4.2)

where

N(x,z) = h'(x)[F(x,h(x)) - F(x,z+h(x))] + G(x,z+h(x)) - G(x,h(x)).

Using the definitions of F and G and the bounds on h, there is
a continuous function ¢6(€) with 6(0) = 0 such that

IN(x,2)| < 8(e)|z| if |z| < €. Using (2.3.6) we obtain, from
(2.4.2),

t
2] < ce P lzc0)] + coce) [ e B 25 as
0

and the result follows from Gronwall's inequality.

Before giving the main result in this section we make some
remarks about the matrix A. Since the eigenvalues of A all have
zero real parts, by a change of basis we can put A is the form

A = A1 + A2 where A2 is nilpotent and

x| = |x]. (2.4.3)

Since A

; 1s nilpotent, we can choose the basis such that

A

St

e e

Bo b




|
l
l
l

|~ el &

|z

|A,x| < (B/4)|x], (2.4.4)

where B8 1is defined by (2.3.6).

We assume for the rest of this section that a basis has been

chosen so that (2.4.3) and (2.4.4) hold.

Theorem 2. (a) Suppose that the zero solution of (2.4.1) is stable
(asymptotically stable) (unstable). Then the zero solution of (2.3.1)

is stable (asymptotically stable) (unstable).

(b) Suppose that the zero solution of (2.3.1) is stable.
Let (x(t),y(t)) be a solution of (2.3.1) with (x(0),y(0))
sufficiently small. Then there exists a solution u(t) of (2.4.1)

such that as t + o,

x(t) = u(t) + o(e” 'Y

(2.4.5)
h(u(t)) + 0(e™ 'Y

y(t)

where Y > 0 is a constant depending only on B.

Proof. If the zero solution of (2.4.1) is unstable then by

invariance, the zero solution of (2.3.1) is unstable. From now on
we assume that the zero solution of (2.3.1) is stable. We prove
that (2.4.5) holds where (x(t),y(t)) is a solution of (2.3.2) with
[(x(0),y(0)) | sufficiently small. Since F and G are equal to f
and g in a neighborhood of the origin this proves Theorem 2. We

divide the proof into two steps.
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I. Let u, € R™ and z, € R™ with |(u0,zo)| sufficiently

0 0

small. Let wu(t) be the solution of (2.4.1) with u(0) = u We f

0
prove that there exists a solution (x(t),y(t)) of (2.3.2) with

y(0) - h(x(0)) = Z) and x(t) - u(t), y(t) - h(u(t)) exponentially

small as t + o,

II. By Step I we can define a mapping S from a neighborhood
of the origin in R™™ into R™M by S(uo,zo) = (xo,zo) where
Xp = x(0). For |(x0,zo)| sufficiently small, we prove that

(xo,zo) is in the range of S.

I. Let (x(t),y(t)) be a solution of (2.3.2) and wu(t) a

solution of (2.4.1). Note that if wu(0) is sufficiently small,

G = Au + F(u,h(u)) (2.4.6)

since solutions of (2.4.1) are stable. Let z(t) = y(t) - h(x(t)), 13

¢(t) = x(t) - u(t), then by an easy computation

z = Bz + N(¢+u,z) (2.4.7)

¢ = Ad + R(¢,2) (2.4.8)
where N is defined in the proof of Lemma 1 and

R(¢,2) = F(u+*¢,z+h(u+¢)) - F(u,h(u)).

We now formulate (2.4.7), (2.4.8) as a fixed point problem.




g
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For a > 0, K > 0, let X be the set of continuous functions
¢: [0,o) »R"™ with I¢(t)eatl < K for all t > 0. If we define

[1o]] = sup{|e(t)e®t]|:

t > 0}, then X is a complete space. Let
ug, 2 be sufficiently small and let wu(t) be the solution of
(2.4.6) with wu(0) = u,- Given ¢ € X 1let 1z(t) be the solution
of (2.4.7) with z(0) = 2,- Define T¢ by

(Te) (t) = [A,9(s) + R(9(s),z(s))]ds. (2.4.9)

) jweAl(t‘s)
t

We solve (2.4.9) by means of the contraction mapping principle.

If ¢ 1is a fixed point of T, then retracing our steps we find that

x(t) = u(t) + ¢(t), y(t) = z(t) + h(x(t)) 1is a solution of (2.3.2).

We can take a to be as close to B as we please at the cost of

increasing K and shrinking the neighborhood on which the result

is valid. For simplicity however, we take K 1 and 2a = B8

where B8 is defined by (2.3.6).
Using the bounds on F,G,h and the fact that N(¢,0) = 0, there
is a continuous function k(€) with k(0) = 0 such that if

n B
v1s9, €R" and z,,z, €R" with |zi| <€, then

A

INCPysz1) - N(@g,z,) | < k(e)[zg[[0,-0,] + [2)-2,](]

IR(QI’ZI) 5 R(¢2,22)|

tA

k(ﬁ)Hzl'zzl = M’l'q’zll .

From (2.4.7),
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t .
20 5 Clzgle™® + cx(e) [ e () )2(5))as
0

where we have used (2.3.6) and (2.4.10). By Gronwall's inequality

-8yt
lz(t)| < Clzyle (2.4.11)

where Bl = B - Ck(¢). From (2.4.9), if € is sufficiently

small,

s - -B:s 3
ITe(t)] < 7 * k(e) I (o™ « Clzyle T TR
t

where we have used (2.4.3), (2.4.4), (2.4.10) and (2.4.11). Hence

T maps X into X.

Now let @1,¢, € X and let 2102, be the coresponding
solutions of (2.4.4) with zi(O) = ;- We first estimate

w(t) = zl(t) - zz(t). From (2.4.7),

- ¢ -B(t-s)
Iw(t)| < Ck(e) I e Tz )19 (8) - e,(s)] ¢ [w(s)|]ds.
0 -
Using (2.4.11),
- Bt b ooB(t-s)
[w(t)] < Clk(5)||¢l-¢,||e + Ck(¢) j e [w(s)|ds
- 0

where CI is a constant, so that by Gronwall's inequality

P -
[w(t)| = I:l(t) - zz(t)| < clk(c)||¢l-wz||e L (2.4.12)
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Using (2.4.4) and (2.4.12), for € sufficiently small,

ITe; (t) - To,(t)] 5% [e)-¢,11 + k(e) !:(“’1(5) - 0,(8)] * |2y(s) - z,(s)|)ds

<al[o,-0,]|

where a < 1.

The above analysis proves that for each (uo,zo) sufficiently
small, T has a unique fixed point. If U 1is a neighborhood of
the origin in R™™™  then it is easy to repeat the above analysis
to show that T: X xU » X 1is a continuous uniform contraction.

This proves that the fixed point depends continuously on u,

and Zy

II. Define S by S(uo,zo) = (xo,zo) where Xg = ug * $(0).

Since ¢ depends continuously on u, and 24 S 1is continuous.
We prove that S 1is one-to-one, so that by the Invariance of
Domain Theorem (see [9] or [47]) S 1is an open mapping. Since

$(0,0) = 0, this proves that the range of S 1is a full neighbor-

hood of the origin in skl

Proving that S 1is one-to-one is clearly equivalent to proving

that if u, * ¢0(0) L ¢1(0) then ug = Uy and @0(0) = ¢1(0).

If Uy * ¢0(0) =u ¢ ¢1(0) then the initial values for x and
y are the same, so that by uniqueness of solution of (2.3.2),
uo(t) + ¢0(t) = ul(t) + ¢1(t) for all t > 0, where wu.(t) 1is the

i
solution of (2.4.6) with ui(O) = u;. Hence, for t > 0,

uo(t) - ul(t) = ¢1(t) . ¢0(t). (2.4.13)




i
g

Since the real parts of the eigenvalues of A are all :zero,

lim |u1(t) - uo(t)|e">t = o for any € > 0 unless ul(O) = uo(o).
t

Also, [¢,(t)] < o Bt

for all t > 0. It now follows from (2.4.13)

that S is one-to-one and this completes the proof of the theorem.

2.5. Approximation of the Centre Manifold

For functions ¢: R"™ + R™ which are C1 in a neighborhood of

the origin define
(M) (x) = 9" (x)[Ax + f(x,9(x))]) - Be(x) - g(x,¢(x)).

Theorem 3. Suppose that ¢(0) = 0, ¢'(0) = 0 and that (M®)(x) =

o(|x|Y as x + 0 where qQ > 1. Then as x =+ 0,
[h(x) - o(x)] = o(|x|Y).

Proof. Let 0: R™ + R™ be a continuously differentiable function

with compact support such that 0J(x) = ¢(x) for |[x| small. Set
N(x) = 9'(x)[Ax + F(x,0(x))] - BO(x) - G(x,9(x)), (2.5.1)

where F and G are defined in Theorem 1. Note that N(x) =
o(|x|Y as x » 0.

In Theorem 1, we proved that h was the fixed point of a
contraction mapping T: X » X. Define a mapping S by Sz =
T(z+V) - U; the domain of S being a closed subset Y e« X. Since

T is a contraction mapping on X, S 1is a contraction mapping on Y,
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For K> 0 1let

Y = {z € X: jz(x)] < K|x]? for all x € R"}.
If we can find a K such that S maps Y into Y then we will
have proved the theorem.

We first find an alternative formulation of the map S. For

zZ €Y let x(t,xo) be the solution of
X = Ax + F(x,z(x) + 6(x)), x(O,xo) = x(0). (2.45.2)

From (2.3.4)

¢ -Bs

(T(2+9)) (xg) = [ ™BS6(x(s,x0),2(x(s,x0)) + 8 (x(s,x0)))ds.
Now
L d -Bs
-G(XOJ i s [ Is le e(x(s,xo))lds
. -Bs d

= [ ePomo(x(s,x)) - 5 0(x(s,xp))1ds.

Writing x for x(s,xo) etc., from (2.5.1) and (2.5.2)

BI(x) - $o 000 = BI(X) - 97 (x) [Ax + F(x,z(x) + 9(x))]

= -N(x) - G(x,9(x)) + 8'(x) [F(x,9) - F(x,z(x) + 9(x))].

A Tl s i
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Using Sz = T(z+Y) -9 and the above calculations

$ B
(52)(xg) = [ eBS(x(s,xq), 2(x(s,x,)))ds (2.5.3)

where x(s,xo) is the solution of (2.5.2) and
Qx,2) = G(x,8+2) - G(x,8) - N(x) + 8'(x)[F(x,8) - F(x,9+2)] - (2.5.4)
We now show that S maps Y into Y for some K > 0. By
choosing 9 suitably, we may assume that [8(x)| < € for all
x € R®. Since N(x) = o(|x|Y) as x = 0,
INCO | < €yIx|9,  x eRr" (2.5.5)

where C1 is a constant. Now

lQ(x,2)| < [Q(x,0)] + |Q(x,2) - Q(x,0) |
(2.5.6)
= ING)| + |Q(x,2) - Q(x,0)].

We can estimate |Q(x,z) - Q(x,0)] in terms of the Lipschitz
constants of F and G. Using (2.3.5), there is a continuous

function k(€) with k(0) = 0, such that

1Q(x,2) - Qx,0)| < k(e)|z] (2.5.7)

for |[z| < e. Using (2.5.5), (2.5.6), (2.5.7), for z € Y and




2%

and x € mﬁ, we have that

[Q(x,z) |

tA

CyIxl + k(e)|2(x) |
(2.5.8)

A

(€ +Kk(e)) x|,

Using the same calculations as in the proof of Theorem 1, if
x(t,xo) is the solution of (2.5.2), then for each r > 0, there is

a constant M(r) such that
[=Ct.2) ) < MEr)jxgle ", t <o (2.5.9)

where Y = r + 2M(r)k(g).
Using (2.5.6), (2.5.8) and (2.5.9), if z € Y,

[(S2) (xp) | 5 CCCp+Kk(e)) M(r)V(B-an) T x, | = C,x, 19

provided € and r are small enough so that B - qy > 0. By choosing

K large enough and ¢ small enough, we have that C < K and this

2
completes the proof of the theorem.

2.6. Properties of Centre Manifolds

(1) In general (2.3.1) does not have a unique centre manifold.
For example, the system x = —x3, y = -y, has the two parameter

family of centre manifolds vy = h(x,cl,cz) where
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c, exp(- % x_z), x>0

h(x,cl,c2)=4 0 x =0
g2

L c, exp (- 5 X ) X <0

However, if h and h1 are two centre manifolds for (2.3.1),
then by Theorem 3, h(x) - hl(x) = O(|x|q) as x + 0 for all

q > 1.

k

(2) If f and g are CX, (k> 2), then h is cK

§37] .
If f and g are analytic, then in general (2.3.1) does not have
an analytic centre manifold, for example it is easy to show that

the system
. I 3 -
X =8 =X, y = -y el (2.6.1)

does not have an analytic centre manifold (see exercise (1)).

(3) Centre manifolds need not be unique but there are some
points which must always be on any centre manifold. For example,
suppose that (xo,yo) is a small equilibrium point of (2.3.1) and
let y = h(x) be any centre manifold for (2.3.1). Then by Lemma 1
we must have Yo = h(xo). Similarly, if T is a small periodic

orbit of (2.3.1), then T must lie on all centre manifolds.

(4) Suppose that x(t),y(t) 1is a solution of (2.3.1) which {

remains in a neighborhood of the origin for all t > 0. An

examination of the proof of Theorem 2, shows that there is a solution

1
I

e —————
24k
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u(t) of (2.4.1) such that the representation (2.4.5) holds.

(5) In many problems the initial data is not arbitrary, for
example, some of the components might always be nonnegative.
Suppose S cR™M™ with 0 € S and that (2.3.1) defines a local
dynamical system on S. It is easy to check, that with the obvious

modifications, Theorem 2 is valid when (2.3.1) is studied on S.

Exercise 1. Consider

E
:
|
E
i
:
‘

X = -x°, y = -y + x2. (2.6.1)

Suppose that (2.6.1) has a centre manifold y = h(x), where h is

analytic at x = 0. Then

h(x) = § a x"

for small x. Show that = 0 for all n and that an+2 = nan

on+1

for n=2,4,..., with a, = 1. Deduce that (2.6.1) does not have

an analytic centre manifold.

Exercise 2 (Modification of an example due to S.J. van Strien [48)).

If £f and g are ¢ functions, then for each r, (2.3.1) }
has a C' centre manifold. However, the size of the neighborhood |4
on which the centre manifold is defined depends on r. The following i

example shows that in general (2.3.1) does not have a ¢® centre &

manifold, even if f and g are analytic.
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Consider

-

H

1
pet
>

'
>
~
"

centre manifold
-1

Suppose that (2.6.2) has a c”

{2.6.2)

y = h(x,e) for
1

x| < &, |e|] < & Choose n > § Then since h(x,(2n) °) is
E ¢ in X, there exist constants A1,85,. 00,8y such that
2n :
hix,(2m) Yy = T oagx! + oY
i=1
for |x| small enough. Show that a; = 0 for odd i and that if
n > 1,
. -1 . <
(1 - (21)(2n) )a2i = (21-2)aZi_2, T T TR o)
(2.6.3)
a, # 0.

o0
not have a C centre manifold.

Exercise 3.

that is f£(x,y) = -£(-X,-¥), B(Xy¥) = -gl-X,+¥).

has a centre manifold y = h(x) with h(x) =

X = -xs, y = -y, shows that if h
h(x) # -h(-x)

then in general.]

-h(-x).

Obtain a contradiction from (2.6.3) and deduce that (2.6.2) does

Suppose that the nonlinearities in (2.3.1) are odd,

Prove that (2.3.1)

[The example

is any centre manifold for (2.3.1)

e ——

]
i
I
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2.7. Global Invariant Manifolds for Singular Perturbation Problems

To motivate the results in this section we reconsider
Example 3 in Chapter 1. In that example we applied centre manifold

theory to a system of the form

y' = ef(y,w)
W' o= =W+ yi - yw o+ ef(y,w) (2.7.1)
€' = 0

where f(0,0) = 0. Because of the local nature of our results on

centre manifolds, we only obtained a result concerning small initial

data. Let v = -w(l+y) + yz, then we obtain a system of the form
Fhs S
v' = -v + Egz(y,v) (8.7 2)
€' =0

where gi(0,0) = 0, i =1,2. Note that if y ¢ -1, then (y,0,0)

is always an equilibrium point for (2.7.2) so we expect that (2.7.2)

has an invariant manifold v h(y,€) defined for -1 <y < m say

and ¢ sufficiently small.

Theorem 4. Consider the system

F
]

Ax + ef(x,y,t)
By + eg(x,y,¢) (2.7.3)

g
"

€E' = (

7.3 5 e
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where x € m". y € RrR"

and A,B are as in Theorem 1. Suppose also
that f,g are C2 with f(0,0,0) = 0, g(0,0,0) = 0. Let m > 0.
Then there is a 6§ > 0 such that (2.7.3) has an invariant manifold
y = h(x,¢), |x|] <m, |¢|] < §, with |h(x,€)| < C|le|, where C is a

constant which depends on m,A,B,f and g.

Proof. Let y: R" + [0,1] be a C function with Ww(x) = 1 if

[x] <m and w(x) =0 if |x| >m + 1. Define F and G by

F(x,y,t) = ef(xv(x),y,&), G(x,y,€) = eg(xv(x),y,¢t).

We can then prove that the system

X' = Ax % BF(x.¥,€)
(2.7.4)
y' = By + G(x,y,¢€)
has an invariant manifold y = h(x,¢), x € m", for |e| sufficiently

small. The proof is essentially the same as that given in the proof

of Theorem 1 so we omit the details.

Remark. [If x = (X{sX5,...,X ) then we can similarly prove the

TS W T e

existence of  h(x,t) for m, < x; < ﬁi.

The flow on the invariant manifold is given by the equation

u' = Au + ef (u,h(u,e)). (:7:5)

T
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With the obvious modifications it is easy to show that the
stability of solutions of (2.7.3) is determined by equation (2.7.5)
and that the representation of solutions given in (2.4.5) holds.

Finally, we state an approximation result.

Theorem 5. Let ¢: R™! o+ R™ satisfy ¢(0,0) = 0 and
| (M®) (x,€)]| < ceP  for x| < m where p 1is a positive integer,

C 1s a constant and
(MP) (x,€) = Dyd(x,e) [Ax + € f(x,0(x,€))] - Bo(x,€) - eg(x,p(x,£)).
Then, for |x]| <m,

Ih(x,&) - 9(x,€)] < C P

for some constant Cl' #
Theorem 5 is proved in exactly the same way as Theorem 3 so we f€

omit the proof.
For further information on the application of centre manifold

theory to singular perturbation problems see Fenichel [20] and

Henry [30].




CHAPTER 3
EXAMPLES

3.1. Rate of Decay Estimates in Critical Cases

In this section we study the decay to zero of solutions of

the equation
r+t+ f(r) =0 (3.1.1)

where f 1s a smooth function with

f(r) = r3 + arS + 0(r7) as r » 0, (3.21.2)

where a is a constant. By using a suitable Liapunov function it
1s easy to show that the zero solution of (3.1.1) is asymptotically
stable. However, because f'(0) = 0, the rate of decay cannot be
determined by linearization.

In [8] the rate of decay of solutions was given using
techniques which were special to second order equations. We show
how centre manifolds can be used to obtain similar results.

We first put (3.1.1) into canonical form. Let x =r + 1,

v = 1, then

k = -f(x-y) (3.1.3)

Y * =¥ ~ (XY,

By Theorem 1 of Chapter 2, (3.1.3) has a centre manifold vy = h(x).

S

Sl o
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By Theorem 2 of Chapter 2, the equation which determines the

asymptotic behavior of small solutions of (3.1.3) is
U = -f(u-h(u)). (3.1.4)
Using (3.1.2) and h(u) = 0(u?),
3

4= -ud o+ oquhy. (3.1.5)

Without loss of generality we can suppose that the solution u(t)

of (3.1.5) is positive for all t > 0. Using L'Hospital's rule,

: o1 rult)
-1 = Lim & = Lim 7} f s 3ds.
t+o u toeo 1
Hence, if w(t) 1is the solution of
v 3
e -y, w{l) = %, (3.1.06)
then u(t) = w(t+o(t)). Since
w(t) = L ¢ 1/2 , ¢"3/2 | o(¢"5/2 (3.1.7)
V2
where C 1is a constant, we have that
u(t) = 55 e 12, o1y, (3.1.8)

To obtain further terms in the asymptotic expansion of u(t), we




need an approximation to h(u). To do this, set

e .

M) (x) = o' (x)f(x-9(x)) + ¢(x) + f(x-9(x)).

‘If o(x) = -x° then (M#)(x) = O(x>) so that by Theorem 3

5

of Chapter 2, h(x) = -x" + O(XS). Subsituting this into (3.1.4)

we obtain

3 = «ud o ae3lu” + Ola'). (3.1.9)

Choose T so that u(T) = 1. Dividing (3.1.9) by u3, integrating
over [T,t) and using (3.1.8), we obtain

t

w'l(u(t)) = t + constant + (3+a) f uz(s)ds (3.1.10)

T

where w is the solution of (3.1.6). Using (3.1.8) and (3.1.9),

t > t ks " 5 t
b syam < -J LA f ot (s))ds
2 :

Jq o u®) (3.1.11)
e 7
= -In t 1/z , constant + o(1).
Substituting (3.1.11) into (3.1.10) and using (3.1.7),
f
g -3/2 i
u(t) « L ¢ 1/2 8 [(a*3) Int + €] + ot 3% (3.1.12)
V2 4/2

where C 1is a constant.

If x(t),y(t) is a solution of (3.1.3), it follows from

.
[ —

Theorem 2 of Chapter 2 that either x(t),y(t) tend to zero ex-

ponentially fast or




T T

A%

x(t) = su(t), y(t) = sud(t)

where wu(t) 1is given by (3.1.12).

3.2. Hopf Bifurcation

There is an extensive literature on Hopf Bifurcation (1,13,1S5,
16,27,30,35,39,40,42,46), so we only given an outline of the theory.

Our treatment is based on [15].

Consider the one-parameter family of ordinary differential

equations on IRZ 3

x = £(x,3), x €RZ,

such that f(0,a) = 0 for all sufficiently small «. Assume that
the linearized equation about 1z = 0 has eigenvalues Y(a) * iw(Q)
where Y(0) = 0, w(0) = w, * 0. We also assume that the eigenvalues
cross the imaginary axis with nonzero speed so that y'(0) # 0.
Since Y'(0) # 0, by the implicit function theorem we can assume

without loss of generality that y(«) = u., By means of a change of

basis the differential equation takes the form

X = A(e)x + F(x,w), (S dndd
where
Q “w(a)
A(x) = |
w(a) Q

F(x,a) = o(]x|?).




AW

Under the above conditions, there are periodic solutions of
(3.2.1) bifurcating from the zero solution. More precisely, for «
small there exists a unique one parameter family of small amplitude
periodic solutions of (3.2.1) in exactly one of the cases
(1) « < 0, (11) « = 0, (iii) <« > 0. However, further conditions
on the nonlinear terms are required to determine the specific

type of bifurcation.
Exercise 1. Use polar co-ordinates for

. 2. 2
X, = dxl - g, ¥ le(x1+x2)

i R g .2
X Uy * Bx, # kxz(x1+x2)

to show that case (1) applies if K > 0 and case (iii) applies if
K < 0.
To find periodic solutions of (3.2.1) we make the substitution

X, = €r cos By X, = 6r sin B, u > eu, (3.2.2)

where ¢ is a function of &, After substituting (3.2.2) into (3.2

we obtain a system of the form

3

~e
i

efar + rz(‘s(o yue)] o+ *-Zr CA(U yHe) + O(LS)

(3:.2.3)

.
n

w

0 + 0(e).

We now look for periodic solutions of (3.2.3) with ¢ ~ 0 and r

1)

i ==s @ ER =

R
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near a constant r,. If Cs and C, are independent of 0 and
the higher order terms are zero then the first equation in (3.2.3)
takes the form

2

t = elar + Bré] + e2Kkrd. (3.2.4)

Periodic solutions are then the circles r = Ty where r is a

0

zero of the right hand side of (3.2.4). We reduce the first

equation in (3.2.3) to the form (3.2.4) modulo higher order terms

by means of a certain transformation. It turns out that the

constant B is zero. Under the hypothesis K is non-zero, it is
straightforward to prove the existence of periodic solutions by

means of the implicit function theorem. The specific type of
bifurcation depends on the sign of K so it is necessary to obtain a

formula for K.

Let F(x,a) = [Fl(xl,xz,a), Fz(xl’XZ’“)lT and let

Fi(x),x5,%) = BI(x),x,, 9 + BY(x),X,,4) + 0(x§+xg) (3.2.5)

where B{ is a homogeneous polynomial of degree i in (xl,x,).
Substituting (3.2.2) into (3.2.1) and using (3.2.5) we obtain

(3.2.3) where for i = 3,4,

ci(u,u) = (cos 6)Bi_l(cos 0, sin 9,q)

+ (sin G)Bf_l(cos 8, sin 9,a),
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Lemma 1. There exists a coordinate change
- 2 0 2
r=r+ eu(r,b,s,€) + €"u,(r,9,0,¢)

which transforms (3.2.3) into the system

% = eur + LZFsl( + 0(&;3)
. plad
0 = w, + 0(¢) S )
0
where the constant K 1is given by

2m 1

K= (1/2m) [C4(¥,0) - w "Cy(Y,0)D;(Y,0)]d0 (3.2.8)
0 4 =3 3

where C3 and C4 are given by (3.2.6) and
DS(O,O) = Cos 0B§(cos v, sin v,0) - (sin G)B%(cos ¥, sin 6,0).

The coordinate change is constructed via averaging. We refer
to [15] for a proof of the Lemma.

[f K =0 then we must make further coordinate changes. We
assume that K # 0 from now on.

Recall that we are looking for periodic solutions of (3.2.7)

with ¢ > 0 and T near a constant ry- This suggests that we set

& 7
« = -sgn(K)e and r, = |K| 1/“. The next result gives the

0
existence of periodic solutions of

= LZ[-sgn(K)? ¢ TR+ 0(53)

4|

(3:.2.9)
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e

with T - ) small. j

Lemma 2. Equation (3.2.9) has a unique periodic solution for ¢ i]

small and T in a compact region either for € > 0 (when K < 0)

or £ < 0 (when K > 0). Also

T =1y +0(e), 9(t,€) = wyt + 0(¢)

and the period of the solution 7tT(e) 1is given by

oo A, VR

v(e) = (Infug) + QLE].

L T

The periodic solution is stable if K < 0 and unstable if K > 0.

v

Lemma 2 is proved by a simple application of the implicit func-
tion theorem. We again refer to [15] for a proof.

Lemma 2 also proves the existence of a one parameter family of
periodic solutions of (3.2.1). We cannot immediately assert that
this family is unique however, since we may have lost some periodic
solutions by the choice of scaling, i.e. by scaling a - ae and
by choosing € = -sgn(K)a.

In order to justify the scaling suppose that X, = R cos b,

X, = R sin U is a periodic solution of (3.2.1) bifurcating from

X = x, = 0. Then R satisfies

R = 4R + O(R%).

When R attains its maximum, ﬁ = 0 so that R = O(«). This
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justifies the scaling « » ue, A similar argument applied to

periodic solutions of (3.2.7) justifies the choice of &,

Theorem. Suppose that the constant K defined by (3.2.8) is non-
zero. Then (3.2.1) has a unique periodic solution bifurcating from
the origin, either for « > 0 (when K < 0) or u < 0 (when
K>0). If x=Rcos %, y =R sin v then the periodic solution

has the form

R(t,«)

-1|1/2

|«K + 0(lal)

8 (t,u)

wgt + 0(la]t/?)
with period 1(«) = (21/w,) + 0(]«|*?). The periodic solution is
stable if K < 0 and unstable if KX > 0.

Finally, we note that since the value of K depends only on
the nonlinear terms evaluated at « = 0, when applying the above
Theorem to (3.2.1) we only need assume that the eigenvalues of A u)

cross the imaginary axis with non-zero speed and that

A(0)

n

with wo non-zero.

3.3. Hopf Bifurcation in a Singular Perturbation Problem

In this section we study a singular perturbation problem which

arises from a mathematical model of the immune response to

Aol d n“ st N P

o,

A

)

- "Fn\
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antigen [43). The equations are

EX = -(x3 + (a - %)x + b - %]

§(1-x) - a - Ylnh (&:3.1)

=
]
tof—

B B -vluh + Yzh

where L.d.vl,\: are positive parameters. In the above model a
and b represent certain concentrations so they must be non-
negative. Also, X measures the stimulation of the system and it
is scaled so that |[x| < 1. The stimulation is assumed to take
place on a much faster time scale than the response so that ¢ is
very small.

The above problem was sudied in [43) and we briefly outline the
method used by Merrill to prove the existence of periodic solutions
of (3.3.1). Putting ¢ = 0 in the first equation in (3.3.1) we
obtain

x3 + (a - %)x + b -

el —
L]
o

£3.35.2)

Solving (3.3.2) for x as a function of a and b we obtain x = F(a,b)

and substituting this into the second equation in (3.3.1) we obtain

8§ = % §(1-F(a,b)) - a - v, ab

B = -yluh + yzb.
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Using ¢ as the parameter, it was shown that relative to a certain |
equilibrium point (ao,bo) a Hopf bifurcation takes place in
(3.3.3). By appealing to a result in singular perturbation theory,
it was concluded that for ¢ sufficiently small, (3.3.1) also has
a periodic solution.

We use the theory given in Chapter 2 to obtain a similar result.

Let (xo,ﬂo,ho) be a fixed point of (3.3.1). If b, + 0 then

0
8, = \2/Y1 and X(s 4 satisfy
Y
3 2.1 g
"0+(7'1"'7)"()*"0'?‘()'
(3.3.4)
Y
£ S(1-%X,) = == « Y.h. = 0
¥ Sli-x, I ) M

Recall also that for the biological prublem, we must have h0 > 0

and |x0| < 1. We assume for the moment that X, and h0 satisty

(3.3.4) and these restrictions. The reality of these solutions are

considered later. We let “0 = Y,/\1 for the rest of this section.
Let y = a - dgs 2 = b - hO’ w = -w(x—xo) - XgY - 2 where
|
y = sxa + "0 - % Then assuming ¥ is non-zero,

S

: e = g(w,y,z,¢€)
y = fo(w,y,2,¢€) (3.3.5)
A

{.S(W'Y’Z’L)

S T

where

P——
.




=L
glw,y,z,€) = £,(W,y,2,€) - ex f,(w,y,2,€) - €fs(w,y,z,¢€)

fl(W,Y,Z.E) ® =YW * N(W*XOY*Z,Y)

§ -1

§ -1
fz(WDYszpe) » (7 ¥ xo -3 = lbo)y * (7 w

§ -1
- Yz)z + 7 vV "w - Ylyz

P R e

fs(w’Y)Z,E) x ’Ylboy i YIYZ

NC9,y) = -e 203 4 3y iy el

l
b
<
7 bl it

In order to apply centre manifold theory we change the time

scale by setting t = €s. We denote differentiation with respect to

B ST R e i

s by ' and differentiation with respect to t by - . Equation

(3.3.5) can now be written in the form

w' = g(w,y,z,¢€)
Y' = Efz(w;Ytan)
(3.3.6)
2' = ef;(w,y,z,€)
&t = 0, !

Suppose that ¢ > 0. Then the linearized system corresponding to 1
(3.3.6) has one negative eigenvalue and three zero eigenvalues. By

Theorem 1 of Chapter 2, (3.3.6) has a centre manifold w = h(y,z,¢).

By Theorem 2 of Chapter 2, the local behavior of solutions of (3.3.6)

is determined by the equation

y' = ef,(h(y,z,€),y,z,¢)

(3.5.7)

2! = EfS(h(Y)Z,C]»Y»ztE)

or in terms of the original time scale




y = £,(h(y,z,€),y,2,¢)
(3.3.8)
2= fa(h(y,z,8),y,2,¢).

We now apply the theory given in the previous section to show that
(3.3.8) has a periodic solution bifurcating from the origin for

L
certain values of the parameters.

i The linearization of the vector field in (3.3.8) about

y =z =0 1is given by

o
<
o]

o

L}
[
-
=2
t3| o
-
1
[
i
~
<!

J(g) = + 0(¢).

It (3.3.8) is to have a Hopf bifurcation then we must have

trace(J(e)) = 0 and

9| o

W-l - Y, > 0. From the previous analysis,

-

we must also have that xo,b0 are solutions of (3.3.4) with

|X0| <1, by, >0 and v > 0. We do not attempt to obtain the
general conditions under which the above conditions are satisfied,

we only work out a special case.

Lemma. Let Yy < Zyz. Then for each € > 0, there exists §(e),
xn(n), hO(L) such that 0 < Zxo(t) < Ly hO(L) > U, ¥ = 0,

s(e)y”? - 2y, > 0, trace J(¢) = 0 and (3.3.4) is satisfied.
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Proof. Fix Yl and Yz with Yl < 272. If xo,bO,G satisfy the
second equation in (3.3.4) then

Y
trace(J(0)) = 5 [xgv ! - 7% (1-x)]

It is easy to show that there is a unique xO(O) € (0,%) that
satisfies trace(J(0)) = 0. Clearly ¥ > 0 for this choice of
xO(O). We now obtain bO(O) and §(0) as the unique solution of
(3.3.4) and an easy computation shows that bO(O) > 0, §(0) >0
and cS(O)W'1 - ZY2 > 0. By the implicit function theorem, for

£, Xg - xO(O), b0 - bo(O) sufficiently small, there exists
G(E,xo,bo) = §(0) + O0(ge) such that

9} o
=
»

trace(J(g)) = 1 - Ylbo + 0(e) = 0.
After substituting 6 = G(E,xo,bo) into (3.3.4), another applica-
tion of the implicit function theorem gives the result. This completes
the proof of the Lemma.
From now on we fix Y1 and Y, with iy ® 2Y2. Using the
same calculations as in the Lemma, for each ¢ and § with ¢
and § - 6(¢) sufficiently small there is a solution xn(c,d),
bo(t,é) of (3.3.4). Writing Xp = xo(c,é(ﬂ)) and trace(J) as a

function of &, we have that

9 ce(J(§ 3 Ylé(e)w-l ;s
33 (trace(J(9§))) §e6(c) ~ m— [Oleo +

¢ (2vy-v)xg - 12y xg) ¢ 0(e) < 0,
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if € 1is sufficiently small. Hence, the eigenvalues of J(§)
cross the imaginary axis with non-zero speed at & = §(€).
Let Yo @ 2(e)z, 2, = m(e)y where
L&) = (b)) 2w 0ce), mee) = tesr2vt - v, 4 oce).

For & = &§(g), (3.3.8) in these new coordinates becomes

. [ = '1
¥y -k, - MR T(C)ye R,

e
(1]

= weyy * m(e)(8/2)v T h(e)zg, 2T )y L0 - v o)y 2

wg(e) = Y b () 1(8/2)v™ - v,1 + 0(e).

To apply the results of the last section, we need to calculate
the K(e) associated with (3.3.9). We shall show how K(0) can be
calculated; if K(0) 1is non-zero then K(€) will be non-zero also.
To calculate K(0) we need to know the quadratic and cubic terms in

(3.3.9) when € = 0. Thus, we have to find h(y,z,0) modulo fourth

order terms.

Let

(MO)()”Z) = ‘g(¢(y,2),y,z,0) (3-3-10)

Then by Theorem 2 of Chapter 2, if we can find ¢ such that

B




= RIE

M) (y,z) = 0(y4*z4) then h(y,z,0) = ¢(y,z) + 0(y4+z4)- Suppose
that

L ¢ =9, + 0, (3.3.11)

where Qj is a homogeneous polynomial of degree j. Substituting

(3.3.11) into (3.3.10) we obtain

(M0) (v,2) = wo,(y,2) - 30 Ix (xgy+e2)? + y(xgy+z) + o(ly|® + [2]).
Hence, if
0,0y,2) = 3 ix (x,y+2)% - v ly(x y+2) (3.3.12)
2 Y’ 0 Oy y Oy . .

then (M$)(y,z) = O(|y|3 + |z|3). Substituting (3.3.11) into
(3.3.10) with ¢2(y,z) given by (3.3.12), we obtain

(M) (y,2) = wos(y,2) + v 2(xgy+2)® - 6v Tx  (xpy+2)0, (v, 2)

*yo,(y,z) ¢ o(ytez?).

Hence,

h(y,z) = 0,(y,2) - v 3(xpyez)’s 6v " 2xy (xgy+2)9,(y,2) - 4

- w'1y¢2(y.2) + 0(y4+24)

where ¢2(y,z) is defined by (3.3.12). K(0) can now be calculated

{
i

el it ta i st
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as in the previous section. The sign of K(0) will depend on Y

and Yoo If K(0) 1is non-zero then we can apply Theorem 1 of
Section 2 to prove the existence of periodic solutions of (3.3.1).
The stability of the periodic solutions is determined by the sign of

K(0). If K(0) 1is zero then we have to calculate K(€).




CHAPTER 4
BIFURCATIONS WITH TWO PARAMETERS IN TWO DIMENSIONS

4.1. Introduction

In this chapter we consider an autonomous ordinary differ-
ential equation in the plane depending on a two-dimensional
parameter €. We suppose that the origin x = 0 is a fixed point
for all €. More precisely, we consider

x = £(x,e), x €R%, € = (g],¢,) €R?,

(4.1.1)
£(0,€)

1

0.

The linearized equation about x = 0 is

x = A(€)x,

and we suppose that A(0) has two zero eigenvalues. The object is
to study small solutions of (4.1.1) for (81,52) in a full
neighborhood of the origin. More specifically, we wish to divide
a neighborhood of € = 0 into distinct components, such that if
€,€ are in the same component, then the phase portraits of (4.1.1)
and (4.1.1)_T are topologically equivalent. We also want to describe
the hehavio; of solutions for each component. The boundaries of
the components correspond to bifurcation points.

Since the eigenvalues of A(0) are both zero we have that

either (i) A(0) 1is the zero matrix, or (ii) A(0) has a Jordan block,




R

0 1
0 0

There is a distinction between (i) and (ii) even for the study of
fixed points. Under generic assumptions, in Case (ii), equation
(4.1.1) has exactly 2 fixed points in a neighborhood of the origin.
For Case (i) the situation is much more complicated (17, 25].
Another distinction arises when we consider the eigenvalues of
A(g). We would expect the nature of the eigenvalues of A(t) to

determine (in part) the possible types of bifurcation. If

then the eigenvalues of A(g) are always real so we do not expect
to obtain periodic orbits surrounding the origin. On the other

hand if

A(¢) (4.1.2)

then the range of the eigenvalues of A(t) is a neighborhood of
the origin in (, that is, if =z 1is a small complex number then
A(e) has an eigenvalue =z for some ¢,

We shall assume from now on that A(t) is given by (4.1.2.).
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Takens [49, 50) and Bodganov [see 2] have studied normal
forms for local singularities. Takens shows, for example, that any

perturbation of the equation

for some €11285. There are certain difficulties in applying these
results since we must transform our equation into normal form, modulo

higher order terms.

In (39, p. 333-348], Kopell and Howard study (4.1.1) under the

assumptions that A(e) is given by (4.1.2) and that

2
b fz
w— (0,0) « 0
axl
where f, is the second component of (. Their approach consists

of a systematic use of scaling and applications of the implicit
function theorem.

In this chapter, we use the same techniquecs as Kopell and
Howard to study (4.1.1) when the nonlinearities are cubic. Our
results confirm the conjecture made by Takens [49] on the bifurcation
set of (4.1.1).

The results on quadratic nonlinearities are given in Section 9
in the form of exercises. Most of these results can be found in

Kopell and Howard ([39].

4.2. Preliminaries

Consider equation (4.1.1) where A(¢) is given by (4.1.2). We

also suppose that the linearization of f(x,e) is A(e)x, and that
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£C0.e) = 6, £{x.8) = -£(-%,8). (4.2.1)

The object is to study the behavior of all small solutions of (4.1.1)
for ¢ in a full neighborhood of the origin. Equation (4.1.1) is

still too general, however, so we shall make some additional hy-

potheses on the nonlinear terms. Set f = (f1'f2) s

33 33 .
Wi S £,(0,0), B = — £,(0,0).
BXI % axixz”
{(H1) « * O
(HZ) B # 0

33 T
(H3) — £,(0,0) = 0.
X
1
(H1) implies that for small ¢, (4.1.1) has either 1 or 3
fixed points. Under (H1), it is easy to show that by a change of

co-ordinates in (4.1.1), we can assume (H3) (see Remark 1).

We assume (H3) in order to simplify the computations.

Under (H1) we can prove the existence of families of periodic
orbits and homoclinic orbits. Under (H1)-(H3) we can say how many i

periodic orbits of (4.1.1) exist for fixed €. The sign of B8 will

determine the direction of bifurcation and the stability of the ‘g

periodic orbits among other things. "
From now on we assume (H1)-(H3). J
The main results are given in Figures 2-5. Sections 3-8 of ;

this chapter show how we obtain these pictures. The pictures for

£ > 0 are obtained by using the change of variables x, * -x,, j :

- -

» -6, and t » -t,.
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Level Curves of H(yl,y2 = £72) - (yl/ 2) + (¥, /4)
FiG. |
€2
L
3/4 :
2 e

Bifurcation Set for the Case a < Uy Bil<Lg.

FIG 2

FLG. 3

Bifurcation Set for the Case a > Uy B %0,
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The cases « > 0 and &« < (0 are geometrically different.
The techniques involved in each case are the same and we on!y do the
more difficult case & < 0. The case & > 0 is left for the
reader as an exercise.

From now on we assume & < (0 in addition to (H1)-(H3). Note
that this implies that locally, (4.1.1) has 1 fixed point for

€, <0 and 3 fixed points for €, > 0.

4.3. Scaling

We scale the variables in equation (4.1.1) so that the first
components of the non-zero fixed points are given by #1 + 0(¢).
To do this we introduce parameters u,d8, scaled variables Y103

and a new time t by the relations

-11/2 172 2. 1142
L e b AL T VR TR PR o L L T

-1/245-1g,

t = |a]
For (u,d8) in a neighborhood of the origin, (el,cz) belongs to
a region of the form {(g;,€,): |€;] < €pr €1 ¢ (constant) E%}.
The 'y, are assumed to lie in a bounded set, say |yi| <M. A
further discussion of the scaling is given in Section 6.

After scaling (4.1.1) becomes

2
Yi =Yy v §7g,(n,8,y)
(4.3.1)
; 3 2 be s
Yo = sgn(e )y, + uy, - y] * Syyyy, + 8%°g,(u,8,y)
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. y - -1
where the dot means differentiation with respect to t, y= B|a| /2
and gi(u,é,y) = 0(1). The size of the bounds on the g; depends
on M,u,8. We write t for t from now on.

The cases € 2 0 and el < 0 are treated separately.

4.4, The Case el >0

With Gy 0, equation (4.3.1) becomes

; 2
Y, =Y, + 87g,(1,6,y)
1 2 L (4.4.1)

.

3 2 2
Yo =¥y *uy, -y ot Syyyy, + 67g,(u,8,y).

Let H(yl,yz) = (y§/2) - (y%/Z) + (y:/4). Then along solutions
of (4.4.1),

H(y,»y,) = Wys + 6vyiyl + 0(s?). (4.4.2)

Note that for u = § = 0, H is a first integral of (4.4.1).

The level curves of H(yl,yz) = b consist of a figure of eight
if b =0, and a single closed curve if b > 0 (see Figure 1).
For b > 0, the curve H(yl,yz) = b passes through the point
g " 0, ¥z * (Zb)l/z. For b > 0 and ¢ sufficiently small, we
prove the existence of a function u = ul(b,G) = -YP(b)6 + 0(62).
For b > 0, (4.4.1) with u = ul(b,é) has a periodic solution
passing through the point Yy, = 0, ¥y ™ (2b)1/2. With u = ul(o,é),
(4.4.1) has a figure of eight solution.

For fixed u,§, the number of periodic solutions of (4.4.1),

surrounding all three fixed points, depends upon the number of




-68-

solutions of
o= (b,8) = -YP(b)S + O(8%). (4.4.3)

We prove that P(b) - » as b + « and that there exists b1 > 0
such that P'(b) < 0 for b < b1 and P'(b) > 0 for b > bl'
These properties of P(b) determine the number of solutions of
(4.4.3).

Suppose, for simplicity of exposition, that ul(b,ﬁ) = -YP(b)S

and that Y < 0. If 0 < b2 < b then there exists bg - b1 such

1’
that ul(bz,d) = ul(bs,é). Hence, if u = ul(bz,é), then (4.4.1)

has two periodic solutions, one passing through ¥y = 0, Yy " (sz)l/z,

R 1 s (0,8,

the other passing through yy = 0, (2b3)
then (4.4.1) has one periodic solution surrounding all three fixed

points. Finally, if w = u(bl,d], then the periodic solutions

coincide.

In Figure 4, the periodic solutions surrounding all three fixed
points in regions 3-5 correspond to the periodic solutions of (4.4.1)
which are parametrized by u = ul(b,ﬁ), b > bl‘ Similarly the

"inner" periodic solutions in region 5 are parametrized by '

Moo= ul(b,é), 0 <b < bl‘ The curve L1 in (el,ez) space corre-
sponds to the curve u = ul(O,G). Similarly the curve L2
corresponds to the curve u = ul(b1,6] (see Figure 2).

In general ul(b,G) is not identically equal to -YP(b)S§,

but the results are qualitatively the same. For example, we prove the

existence of a function b1(6) = b1 + 0(S8), such that if u,d

satisfy u = ul(bl(é),d), then equation (4.4.3) has exactly one l 2




solution. The curve u = ul(bl(G),G) which is mapped into the

curve L2 in (el,ez) space, corresponds to the points where the
two periodic solutions coincide.

If b < 0, then the set of points for which H(yl,yz) = b
consists of two closed curves surrounding the points (-1,0) and
(1,0). For 0 < c < 1, we prove the existence of a function
o= u,(c,8) = -YQ(c)$ + 0(8%). For w = u,(c,8), (4.4.1) has a
periodic solution surrounding the point (1,0) and passing through
¥ ™ Sacyyin 0. Using f(x) = -f(-x), this proves the existence
of a periodic solution surrounding the point (-1,0) and passing
through S 0.

We also prove that Q'(c) > 0 for 0 < c < 1. Let & >0

and suppose u satisfies

W,(0,8) < -sgn(Y)u < K(1,98). (4.4.4)

Then the equation yu = uz(c,a) has exactly one solution. Hence,
for fixed wu,8 satisfying (4.4.4), equation (4.4.1) has exactly
one periodic solution surrounding (1,0). The region in (u,$)
space, corresponding to (4.4.4), is mapped into region 4 in (El,Lz)

space (see Figure 2).

Lemma 1. For § sufficiently small, there exists a function

W= u(8) = (4/5)8 + 0(8°) such that when u = u(6), (4.4.1) has

a homoclinic orbit.
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Proof. Let S(u,8), U(H,8) be the stable and unstable manifolds of
the fixed point (0,0) in (4.4.1). These manifolds exist, since
for u,8 sufficiently small, (0,0) is a saddle [23]. Let

H(u,d8,+) be the value of H(yl,yz) when U(,8) hits s ™ 0,

Y, 2 0. Similarly, H(u,d,-) is the value of H(yl,yz) when

S(u,8) hits y, = 0, Yy > 0. H(u,d8,t) are well defined since

—yrrTT——TT

stable and unstable manifolds depend continuously on parameters.

Let I(u,8,+) denote the integral of ﬁ(yl,yz) over the
portion of U(u,§) with  F 0, ¥y ? 0 from ¥y, =¥ " 0 to
¥o =l ¥y > 0, Then

Hiu,8,+) = I{u,8,+%). (4.4.5)

Similarly, I(u,d8,-) denotes the integral of l{(yl,yz) over the

portion of S(u,d) with ¥y A 0, Yy < 0 from y, =

1 ¥ * 0 to

Y1 = 0, Y, > 0, so that H(Wm,§8,-) = I(u,6,-).
Equation (4.4.1) has a homoclinic orbit (with y; * 0) if and

only if

H(u,8,+) - Hmu,8,-) = 0. (4.4.0)

We solve (4.4.6) by the implicit function theorem

Using (4.4.2) and (4.4.5),
b i 2 b b
H(u,8,+) = [ (uy5 + vdy yy)dt « O™ + &%), (4.4.7)
+ .~ -

where the above integral is taken over the portion of U(0,0) from

YL =¥, =0 to y, =0, y, > 0. Similarly,

-
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Mo, = [ o) s verhyhiae + ol 6h), (4.4.8)

where the integral is taken over the portion of S(0,0) from
¥a ¥y ® 0 to Yy * 0, y, > 0. Using (4.4.7), (4.4.8) and
u(o,0) = -S(0,0), we obtain

2

I H(u,6,%) = -H(u,8,-) + ou? + &) (4.4.9)

Using (4.4.7) and (4.4.9),

Q1w

2 2
U (H1(0,0,+) - Hl(oyon')) ~ 2 J+YZdt > 01

so that by the implicit function theorem, we can solve (4.4.6)
for uw as a function of &, say u = u(8). We now show how to get
an approximate formula for u($8). We can write equation (4.4.6)

in the form

2

u I ygdt + YO I y%ygdt + O(u2 + 8% = 0.
+ +

Hence, using (4.4.1) and y, = +[yi - (y:/Z)ll/z, we obtain

. -Y$ J yfyzdy2
u = + + 0(62) - = 4Y6 + 0(62)

d
[ yan

S

—

This completes the proof of Lemma 1.

| =
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Lemma 1 proves the existence of a homoclinic orbit of (4.1.1)
when €€ lie on the curve L1 given by

€, = -(4/5) || Tge, + o(e)/ D).

Using f(x,¢) = -f(-x,€), when EI’EZ lie on Ll' equation (4.1.1)
has a figure of eight solution.

We now prove the existence of periodic solutions of (4.4.1)
surrounding all three fixed points. In the introduction to this
section, we stated that (4.4.1) has a periodic solution passing
through 0, Py M (Zb)l/2 for any b > 0. In Lemma 2, we only
prove this for "moderate' values of b. The reason for this is that
in (4.3.1) the g; are bounded on.y for y in a bounded set. In

Section 6, we show that by a simple modification of the scaling, we

can extend these results to all b > 0.

Lemma 2. Fix b > 0. Then for 0 <b <b and & sufficiently
small, there exists a function u = i (b,8) = -YP(b)& + 0(8%). If
u = ul(b.d) in (4.4.1), then (4.4.1) has a periodic solution
passing through ¥y ® 0, Y, = (Zb)l/z. As b + 0 the periodic

solution tends to the figure of eight solution obtained in Lemma 1.

Proof. Let H(,68,b,+) be the value of H(yl,yz) when the orbit
of (4.4.1), which starts at ¥y = 0, Y, = (Zb)l/2 intersects

’
Yy = 0. Similarly, H(M,6,b,-) is the value of H(yl,yz) when the

orbit of (4.4.1), which starts at Yy = 0, Yy = -(2b)1/2, is integrated

P & 220
Lt M it i i S .
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backwards in time until it intersects Y, = 0. Then (4.4.1) has a
periodic solution passing through ¥y = 0, Y3 (Zb)l/2 if and only
if

H(u,8,b,+) -~ H(u,6,b,-) = 0, (4.4.10)
Let I(u,S8,b,+) denote the integral of H(yl,yz) over the
portion of the orbit of (4.4.1) with Y, > 0, starting at

Y; = 0, ¥o 8 (Zb)l/2 and finishing at b e 0, y; > 0. Similarly,

I(u,8,b,-) 1is defined by integrating backwards in time. Thus,

H(u, §,b,2) = b + Lu, §,b, ¢). (4.4.11)

Using (4.4.2) and (4.4.11),

)

H(u,8,b,+) = b + f (wy3 + voyoyhrat + ow? + 6% (4.4.12)
where the above integral is taken over the portion of the orbit of

(4.4.1) with u = 6 = 0 from ¥y ™ 0, Yy ® (Zb)l/z to ¥y =
YZ = 0 where

4b = ¢’ - 2c“. (4.4.13)

Similarly, H(u,8,b,-) = -H(u,8,b,+) + 0’ + §%), so that

equation (4.4.10 ) may be written in the form




« Tl

f (uy2 + voylyDyat + ow? + %) = 0. (4.4.14)

Hence by the implicit function theorem, we can solve (4.4.14) to

obtain wu = -YP(b)S + 0(62) where

2
f Y1Y,dvy
P(b) = —— 8 . (4.4.15)
¥7%7;

In order to prove that the periodic solution tends to the

; figure of eight solution as b + 0, we prove that
H(u,8,b,t) + H(u,6,t) as b =+ 0. (4.4.16)

This does not follow from continuous dependence of solutions on
initial conditions, since as b > 0 the period of the periodic

solution tends to infinity. The same problem occurs in Kopell

and Howard (39, p. 339] and we outline their method. For Yy, and

Y, small, solutions of (4.4.1) behave like solutions of the linear-

ized equations. The proof of (4.4.16) follows from the fact that the
| periodic solution stays close to the solution of the linearized

equation for the part of the solution with Y1:Y2 small and con-

tinuous dependence on initial data for the rest of the solution.

Lemma 3. P(b) » » as b + =,




.
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Proof. The integrals in (4.4.15) are taken over the curve
: ;. Yy ® [y% - (yi/Z) + 2b]1/2, from ¥y = 0 to y, =c where ¢ is
1 ; defined by (4.4.13). Thus, Jo(b)P(b) = Jl(b) where
i ;9
: e
: J;(b) = f wiiew? - wtr2y + 20)1/ 2w, (4.4.17)
i 0
Substituting w = cz in (4.4.17) we obtain
f L O
J. (b} = ¢ J tez)® g(z)dz
3 0
where g(z) = [(z%-1) + (¢%/2)(1-2%112. Since g(z) < gc™h
for 0 <z <1, we have that J,(b) < ch3 for some positive con-
ik stant Dl' Similarly, there exists a positive constant D2 “such
that Jl(b) > chs. The result now follows.
Lemma 4. There exists b1 > 0 such that P'(b) < 0 for b < b1
and PY(b) > 0 for b > bl‘ fi
| Proof. It is easy to show that P'(b) = - as b =+ 0, Hence, by
Lemma 3 it is sufficient to show that if P'(bl) = 0 then 4
ARt P"(bl) ¥ 0 1

Let r(w) = [w2 - (w4/2) + 2b]1/2. Differentiating (4.4.17)

with respect to b we obtain

LY pomar et
. : - ‘

; C wZi ]
: ' = 1 A
| [ 3y fo My . (4.4.18) i
i Integrating by parts in J, we obtain ?




( w4_w2
JO =J0L—r—(ledw. (4.4.19)

Also
Cia2 c 2 4
R e , J LR 0 79 AT G 4.4.20
0 Io ) 5 (W) Mo ;
Similarly,
C .6 4 C 2
= 2 4
% =J W-W) 4 = 3f ¥ _ wl - t2) ¢+ 2blaw. (4.4.21)
1 0 r(w 0 (W)

Using (4.4.18) - (4.4.21) we can express J and J1 in terms

0
of Jb and Ji. A straightforward calculation yields

3J

0 4bJ6 + Ji

(4.4.22)

ISJ1 = 4bJ6 + (4+12b)Ji.

Suppose that P'(b;) = 0. Then J,(b;)P"(b;) = Jy(b;)

P(bl)JB(bl)’ Using (4.4.22) we obtain
" " ' e 2 3 -
4b1(4b1+1)[J1(b1) P(bl)Jb(bl)] = Jé(bl)[P (bl) + 8b1P(b1) 4b1]. (4.4.23)
Hence P"(bl) has the same sign as

2
4 (bl) + 8b1P(b1) - 4b1. (4.4.24)

i e R

et
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Since P'(bl) = 0 we have that Ji(bl] = P(bl)Jb(bl)' Using
(4.4.22) we obtain

2 e
5P (bl) + 8b1P(b1) - 4P(b1) - 4b1 = 0. (4.4.25)
Using b1 > 0, it is easy to show that (4.4.25) implies that
P(bl) < 1. Using (4.4.24) and (4.4.25), P"(bl) has the same sign

as P(bl) - Pz(bl). This proves that P"(bl) > 0 as required.

Lemma 5. For & sufficiently small there exist bl(d) = b1 + 0(9),

bz(é) = b, + 0(8), where P(0) = P(bz), with the following properties:

2
Let ¢ > 0.

() It uw @ ul(bl(é),é), then the equation
o= uy (b, ) (4.4.26)

has exactly one solution.

(ii) If y< 0 and ul(bl(d),d) S ul(bz(d),é), then
equation (4.4.26) has exactly two solutions bs(é), b4(6) with
b3(6) = b3 + 0(9), bd(d) = b

solutions of

+ 0(68), where b and b4 are

4 3

P(b) = -us yl, (4.4.27)

lar result holds if Yy > 0.




e

f3ii) Y ¥ <0 and u > ul(bz(é),é), then (4.4.26) has
exactly one solution bS(G) = bS + 0(68), where bg is the unique

solution of (4.4.27).

(iv) If Y <0 and u < ul(bl(d),d), then (4.4.27) has no

solutions. A similar result holds for Yy > 0.

Proof. By Lemma 4, there exists b2 > 0 such that P(bz) = P(0)
and P'(b,) > 0. Set g(z,8) = 6 M{u (by*z,8) - u (0,81,

for &+ 0 and g(z,0) = 0. Then g(z,8) = P'(b,)z + 0(|8| + 2%},
By the implicit function theorem there exists z(8) = 0(§) such that
g(z(8),8) = 0. Hence, if bz(é) = b2 + z(68) then ul(bz(é),6) =
u1(0,6). The existence of bl(G) is proved in a similar way. The
rest of the Lemma follows from the properties of P(b).

We now prove the existence of periodic solutions of (4.4.1)

surrounding a single fixed point.

Lemma 6. For 0 < c¢ <1 and ¢§ sufficiently small, there exists

o= uz(c,é) = -YQ(c)¢§ + 0(62). If u = uz(c,é), then (4.4.1) has a

periodic solution passing through Yy =€ ¥y = 0. As ¢ + 0 the

periodic orbits tend to the homoclinic orbit obtained in Lemma 1.

Proof. Let H(u,8,c,+) be the value of H(yl,yz) when the orbit
of (4.4.1) starting at y, =c¢, y, = 0 intersects y, =0, &2 > 0.
Similarly, H(u,8,c,-) 1is the value of H(yl,y,) when the orbit

y, = 0 is integrated backwards

2]

of (4.4.1) starting at

’
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in time until it intersects ¥ " 0. Equation (4.4.1) will have a

periodic orbit passing through Y] =€ ¥, T 0 if and only if
H(w,d,c,+) - H(u,8,c,-) = 0. (4.4.28)

Using the same method as in Lemma 2, we can rewrite equation

(4.4.28) as

Glu, 8,0} = f (wy3 + véylyD)de + ou® + 6%) = 0 (4.4.29)

where the above integral is taken over the curve

vy, = r(y)) = i - w2y« tray - AR, (4.4.30)
from ¥i = € ¥ " 0 to P 0 again. By (4.4.29)
2. Gla,0,e) » [ pide > @ (4.4.31)
55 60,0, Y5 ; 5

Thus, for fixed ¢ we can solve (4.4.29). We cannot solve (4.4.29)
uniformly in ¢ however, since as ¢ - 1 the right hand side of
(4.4.31) tends to 0. We use a method similar to that used by
Kopell and Howard in (39, p. 337-338] to obtain uz(c,é) for
¢ < c < 1,

Equation (4.4.1) has a fixed point at (yl,yz) = (1,0) +
O(Clul,|8]). For wu,8 sufficiently small we make a change of

variables ?j = hj(yl,yz,u,é) so that the fixed point is trans-
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formed into (?1,?2) = (1,0). An easy calculation shows that if
we make this transformation, then the only change in (4.4.1) is
in the functions 81 and g, We suppose that the above change

of variables has been made and we write yj for yj.

The curves H(yl,yz) = H(c,0) can be written in the form

2

Wy * 1= 2y v opDEpn? = eDPen? @)

Thus, for ¢ close to 1 the closed curves are approximately
y2 + 2y;-1)% = 2(e-1)2. (4.4.33)
so instead of equation (4.4.30) we consider the equati?n
G(u,6,c) = (c-1)%G(c,u,8) = 0. (4.4.34)

1f we prove that G(u,8,c) is bounded for 0 < ¢ < 1 and that
(3/8u)G(0,0,c) is bounded away from zero for 0 < ¢ < 1, then we
can solve (4.4.34) uniformly in c.

Now

¢ 2 &%
H()’lp)'z) - uYZ i GIYYIYZ 35 6Y2g2 v G(Yi’yl)gll'

Since the fixed point is at (1,0), ﬂ(yl.yz) is bounded above and
below by quadratic forms in Y, and Yy - 1. By (8.4:32),

4H(y1,y2) + 1 1is bounded above and below by quadratic forms in y,




and y, - 1. Hence there exist functions q;(,$) = o(jul + [d])

such that

q (1,8) < $& In(4H(y ,y,) + 1) < qy(n,6).

Integrating the above inequality over the curve given by (4.4.30)

we obtain

exp(q (,8)T) < [4H(y,6,c,+) + 1]/[4H(c,0) + 1] < exp(q,(H,8)T) (4.4.35)

where T is a bound for the time taken to trace the orbit. Using
(4.4.29), (4.4.32) and (4.3.35) we see that G(u,8,c) is bounded.
The fact that (3/9u)G(c,0,0) is bounded away from zero follows
easily from (4.4.32). This proves that for 6 sufficiently small
and 0 < c < 1, we can solve (4.4.32) to obtain u = uz(c,é) =

-YQ(c)é + 0(8%) where Jo()Q(e) = I, (e),
. f
Ji(c) = [Cw21r(w)dw f;

and r(w) is defined by (4.4.30) and r(d) = 0, d > c. 4

The fact that the periodic solution tends to the homoclinic

orbit is proved in the same way as the corresponding result in Lemma 2.




B0

Using f(x) = -f(-x), Lemma 6 proves the existence of periodic

solutions of (4.4.1) surrounding (-1,0).

Lemma 7. Q'(c) > 0 for 0 <c < 1.

Proof. We write Q,JO and Jl as functions of b where

4b = ¢ - 2cZ. Since (db/dc) < 0 for 0 < c < 1, we must prove

that Q'(b) < 0 for -1 < 4b < 0. Following the same procedure

as in Lemma 4, we find that JO’Jb’ Jl’Ji satisfy equation (4.4.22).

Thus, if Q'(bl) = 0 then

SQZ(bl) + 8b,Q(b;) - 4Q(b) - 4b, = 0.

Since -1 < 4b1 < 0, the roots of (4.4.36) are less than 1.
if Q'(bl) = 0 then Q(bl) < 1., Also, from (4.4.23), if Q’(bl) =0

then Q(b)) has the same sign as 4b; - 8b,Q(b;) - Q*(b,)

(4.4.36)

. Using

(4.4.36) and Q(bl) < 1, this implies that Q"(bl) < 0. Since

Q(-1/4) =1, Q(0) = 4/5, this shows that Q'(b) < 0 for -

This completes the proof of the Lemma.

4.5. The Case 61 <0

With Ly 0, equation (4.3.1) becomes

. 2
Yy =Yy * 67 (H,8,y)

. 3 2 2
)'2 - 'Yl * uyZ i yl ¥ GYYIYZ + 6 gz(“ ’6))’)'

aaan L T . S S N

1 < 4b < 0.

(4.5.1)

Hence,




é
'839 ;

Let Hl(yl,yz) = (yg/Z) + (yi/Z) + (yi/4). Then along solutions
of (4.5.1), ﬁl = uy% + GYyiyg + 0(62). Using the same methods as
in the previous Lemmas, we prove that (4.5.1) has a periodic solu- ﬁ:
tion passing through ¥y =6 > 0, y, = 0, if and only if j

W= ug(c,8) = -YR(c)S + 0(6%), where Jp(CIR(e) = Y, (),

G ns
Ji(c) = JOWZIr(w)dw,

Flu) = 02 - a2y - w2 g -t 6 oac

In order to prove that for fixed u,$8, equation (4.5.1) has
at most one periodic solution we prove that R is strictly

monotonic.
Lemma 8. R'(c) > 0 for c¢ > 0.
Proof. We write R,JO,J1 as functions of b. It is sufficient

to prove that R'(b) > 0 for b > 0.

Using the same methods as before, we show that

w
[
i

= 4bJ} - J}

(12b+4)J1 - 4bJ}

(4.5.2)

—

wu

<
]

(4.5.3)




-84-

Now R' has the same sign as S where S = IS[JiJO-Jlel. By
(4.5.2),

b3

+

S = (8b-4)J4J4 = 5(Ji)2

g By (4.5.3), bJ6 > Ji. Hence, for b > 2.

1y 2
S(Jl) > 0.

s > ()% (8b-4-5b+a)

Similarly, if 0 <b < 2, then S > 3b2(J6)2 > 0. This completes

the proof of Lemma 8.

4.6. More Scaling

In Section 4 we proved the existence of periodic solutions
of (4.4.1) which pass through the point (0,(2b)1/2). Lemma 3
indicates that we may take b to be as large as we please. How-
ever our analysis relied on the fact that the g; are 0(1)
and this is true only for y in a bounded set. Also, our analysis
in Sections 4 and 5 restricts El,ez to a region of the form
{(ey,€;5): lell < €y, € < (constant) eg}.

To remedy this we modify the scaling by setting
§ = |€,a'1|1/2h'1, where h is a new parameter with 0 < 4h < 1
say. The other changes of variables remain the same. Note that if
u,6 1lie in a full neighborhood of the origin then (€1,€2) and
(xl,xz) lie in a full neighborhood of the origin.

After scaling, (4.1.1) becomes

£
:
§
4
i
i’;
£




“R&.

).'1 i * nglﬂl,d,h,}’)

(4.6.1)

For 0 < 4h <1 and u,§ sufficiently small, the g; are 0(1)

for y in a bounded set.
2 2.2 4
Let el > 0. Let Hz()’l;)’z) = (YZ/Z) = (h YI/Z) * (Y1/4)-
Then along solutions of (4.6.1), H, = uyg + Yéyfyg + 0(u2+62).
Following the same procedure as in Section 4, we find that (4.6.1)
has a periodic solution passing through Y, = 0, Y, = 1, if and

only if

u = hfu (b,8) = -vhZr(b)6 + 0(sh),

where 2b = h 4.

h%P(b) = K + O(h%), where J

An easy computation shows that as h =+ 0,
ok = V2 Jy,
ol PO P L
J. = I woi(l-w') dw.
y 0

Thus, for small h, (4.6.1) has a periodic solution passing through
y, = 0, y, =1 if and only if u = -vKé + O(h%|8| + 6%). In
particular, when 81 =0, €, > 0, B< 0, (4.1.1) has a periodic
solution passing through x; =0, x, = Iul(-BK)'le2 + 0(82/2).

For €y € 0, a similar anlysis shows that (4.6.1) has a periodic

solution passing through y; = L, y, = 0, if and only if

-yh%Q(h 1ys + 0(s?),

Moo= hzuz(h'l,a)

S g T Y AT 7R,

2 3 2 2
Y, = h¥sgn(€))y; *+ My, - y] + 8Yyjy, + 6%, (¥,8,h,y).
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and that as b ~ 0. heaih'1) = (E/V3) + omr%).

4.7. Completion of the Phase Portraits

Our analysis in the previous sections proves the existence of
periodic and homoclinic orbits of (4.1.1) for certain regions in
€1 - &, space. We now show how to complete the pictures.

Obtaining the complete phase portrait in the different regions in-
volves many calculations. However, the method is the same in each
case so we only give one representative example. We prove that if
Y < 0, then the '"outer" periodic orbits in region 5 is stable. We
use the scaling given in Section 3.

Since we are in region 5, u1(0,6) >R > ul(bl(é),d). Fix u
and ¢ and let b2 be the solution of u = ul(b,d) with

b2 > bl(G). Then we have to prove that the periodic solution T

of (4.4.1) passing through y. = 0, y, = (2b )1/2
1 2 2

is stable.

Let b3 be the solution of u = ul(b,é) with b3 < bl(é).
Then there is a periodic solution passing through 3 e 0,
¥q ™ (be)l/z. In fact, we prove that any solution of (4.4.1)
starting "outside'" this periodic solution (and inside some bounded
set) tends to I as t » «,

Let b > b3. Let c¢(b,+) be the value of Y1 when the orbit
of (4.4.1) starting at ¥y 0, - P (Zb)l/2 first hits ¥s * 0.
Similarly, c(b,-) is the value of Y1 when the orbit of (4.1.1)

starting at y, = 0, - e (Zb)l/2

is integrated backwards until it
hits Y, = 0. Using f(x,€) = -f(-x,€), the solution passing through

(0,(2b)1/2), spirals inwards or outwards according to the sign of

e

O e

Rl i

o . s




~Q7e
c(b,+) + c(b,-). Using the calculation in Lemma 2, c(b,+) + c(b,-)

has the same sign as H(u,6,b,+) - H(M,8,b,-) which in turn has

the same sign as

S = ul(bz,é) = ul(b,d).

Using the properties of ul(b,d) given in Lemma 5, S 1is positive

if b < b2 and negative if b > bZ' The result now follows.

4.8. Remarks and Exercises

Remark 1. Consider equation (4.1.1) under the hypothesis that the
linearization is given by X = A(€)x where A(€) 1is defined by
(4.1.2). Suppose also that (4.2.1) and (H1) hold. Make the change

of variables X = B(e)x, where B(g¢) = I - ra'lA(E) and

83f1(0,0) 33f2(0,0)
T ™ e O b
3x3 g Bx3
1 1

The map x - X will be one-to-one for ¢ sufficiently small.
Using the fact that A(e) and B(€) commute, it is easy to show
that the transformed equation satisfies all the above hypotheses
and that in addition it enjoys (H3). In particular, if the trans-

formed equation is
x = F(x,¢)

then

St bl ol .




SN —

3
3 FI(O,O) s

=0

ity
3x1
2°F, (0,0) a3f2(o,0)

=% 5 3
ax1 axl

SSFZ(O,O) 2%¢,(0,0) 3a3f1(o,0)

+

=3 2 3
Bxlaxz 3x13x2 axl
Remark 2. We have assumed that f(x,e) = -f(-x,€). If we assume

that this is true only for the low order terms then we would obtain

similar results. For example, on L we would get a homoclinic

1

orbit with Xy 2 0. Similarly on another curve Li we would get
a homoclinic orbit with X; < 0. In general L1 and L{ would be
different although they would have the same linear approximation

uo= (4/5)8.

Remark 3. Suppose that we only assume (Hl) and (H3). Then we can
still obtain partial results about the local behavior of solutions.
For example, in Lemma 2 we did not use the hypothesis B8 nonzero.

Hence, for each b > 0, (4.1.1) has a periodic solution through

x; = 0, X, = IG'-I/Z(Zb)l/ZE1 for some €, and €, with e > 0.
However, we cannot say anything about the stability of the periodic
orbits and we cannot say how many periodic orbits (4.1.1) has for

fixed €, and ¢

1 2°

e ond BB -

g

B
—
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Exercises.
(1) Suppose that & and B are negative. Prove that for
(51,62) in regions 5 and 6, (4.1.1) has a connecting orbit.

Hint: Use the calculations in Lemma 1 and Lemma 6.

(2) Suppose that « and £ are negative and that (61,62)
is in region 3. Let U be the unstable manifold of the point
(0,0) in (4.1.1). Prove that U 1is in the region of attraction

of the periodic orbit.

(3) Suppose that & 1is positive and B 1is negative. Show
that the bifurcation set and the corresponding phase portraits are

as given in Figures 3 and 5.

4.9. Quadratic Nonlinearities

In this section we discuss the local behavior of solutions of

(4.1.1) when the nonlinearities are quadratic. Most of the material

in this section can be found in [39].

Suppose that the linearization of (4.1.1) is X = A(e)x where

A(e) 1is given by (4.1.2) and that

2
£(0,e) = 0, 25 £,(0,0) = 0.
axl
52 a°
W fZ(O’O) + 0, B = e 12(0,0) # 0.
axl | g

We also assume that g8 > 0, a < 0; the results for the other cases

are obtained by making use of the change of variables, t + -t,

€) + "€y X > Xy, Xy ;xz.

mm—— |

>

NE >R R

-

AT




-90-

Introduce parameters u,$, scaled variables YirY2 and a new

——

time t by the relations

LR 2 1/2,3 .
§ = Jepa - = Ja}/ 283y,

We asume that € ® 0 in what follows, see Exercise 8 for the

case 81 < 0.

After scaling, (4.1.1) becomes

]

¥y, = vy + 0(8%)

(4.9.1)

. 2 2
Yo = ¥y * MY, - ¥y * Svyyy, + 0(87)

where the dot means differentiation with respect to t, the Y;
lie in a bounded set and Y = Blul'l/z. Note that by making a
change of variable we can assume that (1,0) is a fixed point of
(4.9.1) for wu,8 sufficiently small.

The object of the following exercises is to show that the

bifurcation set is given by Figure 6 and that the associated phase

portraits are given by Figure 7.

Exercises.

(4) Let H(y;,y,) = (¥3/2) - (yi/2) + (v{/3). Show that

along solutions of (4.9.1),

~
~

2
o SR E N

it

n

+ 0(8%y.
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(5) Prove that there is a function W = ul(c,d), D 2c%tl,
such that if u = ul(c,d) in (4.9.1) then there is a periodic
solution through (c,0) if 0 < c <1 and a homoclinic orbit if
c = 0.

(6) Prove that u (c,8) = -YP(c)é + 0(6%) where

Jo(e)P(c) = J,(c),

cy .
Ji(c) = Ic wlR(w)dw,
R(wW) = [we - (2/3)w> + 261172,
6b = cz(Zc-S), R(cl) =0, c, > c.

(7) Prove that P(0) = (6/7), P(1) =1 and P'(c) > 0 for
0 < c < 1. Deduce that for fixed u,8, (4.9.1) has at most one

periodic solution. (To prove that P'(c) > 0 we can use the same

techniques as in the proof of Lemma 4. An alternative method of proving

P'(c) > 0 is given in [(39].)

(8) 1If € < 0, then after scaling (4.1.1) becomes

g, = ¥y + 0(8%)
& 2 2
Y % 7Yy T PY C ¥yt TSYyYg t 90V ).

Put ¥y, %3 -1, W =u - YSs. Then

=y, + 0(6%)

Y= 2 + My, - 22 Syzy, + 0(s?)
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which has the same form as equation (4.9.1) and hence transform the

results for Cl > 0 into results for the case cl < 0,

(9) Show that the bifurcation set and the corresponding phase

portraits are as given in Figures 6-7.

FIG. ©

Bifurcation Set for the Case &« < 0, B > 0.
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FIG, 7
Phase Portraits for the Case o< 0, B> 0, (For the phase portraits
regions 4-6 use the transformations in Exercise 8.)
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CHAPTER 5
APPLICATION TO A PANEL FLUTTER PROBLEM

5.1. Introduction

In this chapter we apply the results of Chapter 4 to a

particular two parameter problem. The equations are

X = Ax + f(x)

where

(5.1.1)

x = [xl.xz.x3.x41T, £(x) = [£,(x),£,(x),£5(x),£,(x)17,

- =
0 1 0 0
a, b1 c 0
A =

0 0 0 1

-C 0 a, b2
fi(x) = f:(x) = o0,
£,(x) = x,8(x),
f4(x) by 4x3g(x),
2g(x) = -"4(kxi + 0x X, * 4kx§ + 4ox3x4),

8¢ Py

LSl 0 S 1252252 ry,

4

k>0, c >0 are fixed and p,I' are parameters.

b, = -ten!5® « /5 61 a = 0,005, §=o0.1,

The above system

|




|
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results from a two mode approximation to a certain partial differ-
ential equation which describes the motion of a thin panel.

Holmes and Marsden [32,34]) have studied the above equation and
first we briefly describe their work. By numerical calculations,
they find that for ¢ = Po ™ 108, T = Po o -2.23ﬂ2, the matrix A
has two zero eigenvalues and two eigenvalues with negative real
parts. Then for |D-00| and |F-F0| small, by centre manifold
theory, the local behavior of solutions of (5.1.1) is determined by
a second order equation depending on two parameters. They then
use some results of Takens [49] on generic models to conjecture

that the local behavior of solutions of (5.1.1) for |[ep-p,| and

|r-r0| small can be modelled by the equation

2 3

U+ au+ bu+u‘a+u’=0
for a and b small.

Recently, this conjecture has been proved by Holmes (33], in
the case 0 = 0, by reducing the equation on the centre manifold
to Takens normal form. We use centre manifold theory and the

results of Chapter 4 to obtain a similar result.

5.2. Reduction to a Second Order Equation

The eigenvalues of A are the roots of the equation

x‘ + dlx

3 + d Az + d

2 SA + d4 = 0 (5.2.1)

where the di are functions of I and p. If A has two zero
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eigenvalues then d; =d, = 0. A calculation shows that if d; = d, =0, then

(5.2.2)
a,b, + b.a, =0

or in terms of I and op,

64 2

an(nler) (4nder) + 8 0% =0 (5.2.3)

1/2

(16an4+dp )(n2+r) + 4(an2+6p1/2)(4n2+r) = 0. (5.2.4)

We prove that (5.2.3), (5.2.4) has a solution T =T p =9

0’ 0
From (5.2.3) we can express P 1in terms of I'. Substituting

this relation into (5.2.4) we obtain an equation H(T) = 0.

Calculations show that H(Pl) <0, H(Fz) > 0 where Fl

o 2 -
and PZ = -(2.23)1°, so that H(Po) 0 for some FO € (Pz,rl).
Further calculations show that (5.2.3), (5.2.4) has a solution

Faul with 107.7 < p

0’0o < 107.8.

0
In the subsequent analysis, we have to determine the sign of
various functions of FO and Po* Since we do not know To and

Pg exactly we have to determine the sign of these functions for
PO and ib in the above numerical ranges.
When T = PO’ P = Py the remaining eigenvalues of A are

given by

= -(2.225)7°
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§
|
i
i
{
|
|

-0 7~

g R [(bl'bz)z + 4(“‘1”‘2”1/2
3,4 3 ’

and a calculation shows that they have negative real parts and
non-zero imaginary parts.

We now find a basis for the appropriate eigenspaces when
Fo- PO' L fedie Solving Av1 = 0 we find that

v, = ll,O,-al/c,O]T. (5.2.5)

The null space of A is in fact one-dimensional so the canonical
form of A must contain a Jordan block. Solving szz =0 we
obtain

¥, = 100,00, a1, Hv, = . (5.2.6)
The vectors vy and v, form a basis for the generalized eigenspace
of A corresponding to the zero eigenvalues. Similarly, we find a
(real) basis for the space V spanned by the eigenvectors correspond-
ing to AS and A4. Solving Az = st, we find that V is spanned

by vy and V4 where

2v3 =g+ 2, 2v, = i(z-2),
z = [1,A3,w,x3w1r (5.2.7)
we = b,A, - b,b, +

Let Ao denote the matrix A when T = PO and p = P
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Let S = (VI’VZ’VS’V4] where the v, are defined by (5.2.5),

(5.2.6) and (5.2.7) and set y = Shlx. Then (5.1.1) can be written

in the form
y = By + STL(A-AQ)Sy + F(y,T,0) (5.2.8)

where F(y,l,p) = S-lf(SY),

and where A; = P, * ip,, p; < 0, p, # O.

Then for IF-FOI and lo-pol sufficiently small (5.2.8)
has a centre manifold Y3 = hl(yl,yz,r,p), i ™ hz(yl,yz,r,p). The

flow on the centre manifold is governed by an equation of the form

= w E(r’p) * N(yl))’z,r,p) (5-2.9)

where E(I,p) is a 2 X 2 matrix with E(ro,po) = 0 and
N(yl,yZ,P,D) contains no linear terms in Yy or y,. We show
that there is a nonsingular change of variables (I,p) ~» (61,62)
for (I',e) close to (FO,DO) and a T,p dependent change of

variables (y;,y,) » (?1,§2) such that the linearized equation

- B

Le——

LR e v,
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corresponding to (5.2.9) is

? = . (5.2.18)
Y2 € (Y2

The transformation (Vp»y,) = (?l,y,) is of the form

Identity + 0(|F-F0|, |p-p0]) and T = Fy» P= ¢, is mapped into

51 =0, ¢, = 0. After these transformations, (5.2.9) takes the form

= ‘ * N(ypay5T0sPg) + N(yp,y,,T,0)  (5.2.11)

where we have dropped the bars on the Y- The function N will
contain no linear terms in y; or y, and N(yl,yz,ro,po) = 0,

Since the nonlinearities in (5.1.1) are cubic, the same will be 3

true of N and N.

o

Let 3
T b
N()'I.)’:.FO.PO) & [Nl(,\'lp,vzproipo)’ Nz(yly.\'zyro)po)] t5¢2.12) :
and let
}3
s iRy i
Y1 |
|
33 k
e Np(0,0,T5P0) F
= £5.2:.313) '
-p '\3 .
g = p—— N»(Otoproy‘)o)
aY;aY1 -

-

8 = 3r + §,
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Using the results in Chapter 4 (see, in particular, Remark 1 in
Section 8), if ®y and B are non-zero, we can determine the
local behavior of solutions of (5.2.11). B¥ Theorem 2 of Chapter 2,

this determines the local behavior of solutions of (5.2.8).

5.3. Calculation of the Linear Terms

From (5.2.1), trace(A) = ds(r,p), det(A) = d4(r,0) where

dy(r,0) = anf(nlery(anter) + &2 p?

dd(r’p) = n2(160n4¢5p1/2)(n2+r) + anz(an2+6p1/2)(4nz+r),

Calculations show that the mapping

([‘,p) g (ds(r:p)’d (I',D)) (5.3.1)
has non-zero Jacobian at (T',p) = (Fo,po).
Define the matrix C(T,pP)

0 1
c(r,e) = + E(T,P)
0 0

and let J be the value of the Jacobian of the mapping
(r,e) - (trace(C(r,e)), det(C(r,e))), (5.3.2)

evaluated at (Po,po). By considering the 4 X 4 matrix

B + S'I(A-AO)S, it is easily seen that J is a non-zero multiple
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of the Jacobian of the mapping given by (5.3.1). Hence J

non-zero, so by the implicit function theorem we can use

€, = -det (C(T,P)), €, = trace(C(r',p))

-

Approximate formulae for € and ¢,

desired.

Let C(LT,p} = [c..];

1)

n
=

( Y, 0 1 Y1
[_;z e Gl Y2
Note that M is equal to the identity matrix when €, = ¢

manifold has a '"cubic zero'" at the origin. Using

centre manifold

1s

as our bifurcation parameters.

can easily be found if so

5.4. Calculation of the Nonlinear Terms
We now calculate the nonlinear term in (5.2.9) when I = TO
=Py Since the nonlinearities in (5.1.1) are cubic, the centre

X = Sy, on the

—



(5.4.1)
-8 bl -a
g mmr My trg ¥yt Ug By » w2ty + 0,
3 3
where 0, = OCly ™ + ly,17).
Let S-1 = [tij] and let
Fj(ylv)'z) = f. (yl’)’Z’h (yl’y2’ » P ))
Then using the notation introduced in £5.2.12)
Ny Orgsy2eTpaPg) = t15F(y1,Y,) * t,F,(y,y,)
(5.4.2)
Using (5.4.1)
2
T .3 2 8ka;b; 5 e
% : 2
terms in b 0 0S
F4()’1,)’2) by NEeTt Fz(yl’)’Z) N [kylyz ¥ 4k(_) ylyz

+ terms in ylyg and yg + 05

where 0, = O(lyll5 + lyz{s). Note also that since T = I, and
P = py, (5.2.2) holds.

From (5.2.13) and (5.4.2)

e eees = R

wol

v
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_"4 al 2 al
O = = RO+ 4R ) (2, - &2 ty,)
4 a a
X %1)2 AP
1 3 k(1 + 4(C ) )(t12 4c t]d)
2
b doa* a 4
11 1 1 20 ’ .
C: + C: )(t‘:: = 4T—t24) *—C}-hll\t24(k *4.11).

B= g (0+

Routine calculations show that

Using (5.2.2) and

so that « and

of kK in B is

Hence ul and B

of (5.1.1) can be

Y
t12 = m“hz(zal-hlhz)
t,, = ma,
t.. = meclb.%b.)
14 s Sl

(aloaz-blbz)" < 0.

numerical calculations, we find that

a
1
tz1 -4 =t * m(4al+az) >0

- bom?(2a.-b2 >
tiy - 4 2ty = bymT(2a,-b3-da;) > 0

r are negative. Similarly, the coefficient

Sand
. alblm(IZal*aZ) < 0.

C

are negative and the local behavior of solutions

determined using the results of Chapter 4.




|
|
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CHAPTER 6
INFINITE DIMENSIONAL PROBLEMS !

6.1. Introduction

In this chapter we extend centre manifold theory to a class
of infinite dimensional problems. For simplicity we only consider

equations of the form

we=Cw + Nw), w(0) € 2,

where Z is a Banach space, C 1is the generator of a strongly
continuous semigroup on Z and N: Z - Z is smooth. (For a
discussion of semigroup theory see {4, 44].) With appropriate

spectral assumptions on C, it is very easy to prove the analogues

of Theorems 1-3 of Chapter 2. For generalizations to other

o2l x5m

evolution systems see [30,42].

6.2. Centre Manifolds

Let Z be a Banach space with norm ||-||. We consider }

ordinary differential equations of the form i
w==Cw + Nw), w(0) € 2z, (6.2.1)

where C is the generator of a strongly continuous linear semigroup
S(t) and N: Z - Z has a uniformly continuous second derivative
with N(0) = 0, N'(0) = 0 |[N' is the Frechet derivative of NJ. |

It can be shown [4,7] that, with an appropriate definition of weak
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solution, a function w € C([0,T];Z), T > 0, is a weak solution

of (6.2.1) if and only if w satisfies

on [0,T].

t
w(t) = S(t)w(0) + IOS(t-r)N(w(t))dr (6.2.2)

A standard argument shows that there is a unique solu-

tion of (6.2.2) defined on some maximal interval [O,Tm), Tm >0,

and that if Tm < o then

Lim_ ||w(t)]|]| = =.
t->T
m

Furthermore, if w(0) € D(A) then w(t) is differentiable on

(0,T,)

and satisfies (6.2.1).

To put (6.2.1) into canonical form we make some spectral

assumptions about C. We assume from now on that:

(i)

(i1)

(iii)

Let

and for

Z=X®Y where X is finite dimensional and Y is
closed.

X 1is C-invariant and that if A 1is the restriction of
C to X, then the real parts of the eigenvalues of A
are all zero.

If U(t) is the restriction of S(t) to Y, then Y

is U(t)-invariant and for some positive constants a,b,

llucey]| < ae™®%, ¢ > 0. (6.2.3)

P be the projection on X along Y. Let B = (I-P)C

x €X, y €Y, let f(x,y) = PN(x+y), g(x,y) = (I-P)N(x+y).
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Equation (6.2.1) can be written

e
]

. Ax + f(x,y) ‘
(6.2.4)
i By + g(x,y).

Lk

<
]

R

oy, 4

An invariant manifold for (6.2.4) which is tangent to X

{ space at the origin is called a centre manifold.

Theorem 1. There exists a centre manifold for (6.2.4), y = h(x),
2

|x] <6 where h is C
The proof of Theorem 1 is exactly the same as the proof given

in Chapter 2 for the corresponding finite dimensional problem.

The equation on the centre manifold is given by

" g a
RO RS RRRRE ..- SA—-

u=Au + f(u,h(u)). (6.2.5)

In general if y(0) 1is not in the domain of B then y(t) will
not be differentiable. However, on the centre manifold y(t) =

h(x(t)), and since X 1is finite dimensional x(t), and consequently

|
|
|
!
y(t), are differentiable. \

Theorem 2 (a) Suppose that the zero solution of (6.2.5) is stable
(asymptotically stable) (unstable). Then the zero solution of
(6.2.4) is stable (asymptotically stable) (unstable).

(b) Suppose that the zero solution of (6.2.5) is stable

Let (x(t),y(t)) be a solution of (6.2.4) with ||(x(0),y(0)]] ‘
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sufficiently small. Then there exists a solution wu(t) of (6.2.5)

such that as t +» o,

x(t) = u(t) + o(e” 'Y

(6.2.6)

y(t) = h(u(t)) + o(e 'H

where Yy > 0.

The proof of the above theorem is exactly the same as the proof
given for the corresponding finite dimensional result.
Using the invariance of h and proceeding formally we have

that

h' (x)[Ax + f(x,h(x))] = Bh(x) + G(x,h(x)). (6.2.7)

To prove that equation (6.2.7) holds we must show that h(x) 1is in the

=

domain of B.

=

Let X € X be small. To prove that h(xo) is in the domain
of B it is sufficient to prove that

- h(x

U(t)h
e (t)h(x,) 0)

t+0* t

exists. Let x(t), y(t) = h(x(t)) be the solution of (6.2.4) with §

x(0) = Xg- As we remarked earlier, y(t) 1is differentiable. From
(6.2.4) |

t
y(t) = U(t)h(xy) *+ [OU(t-t)g(x(r).y(t))dt. |
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so it is sufficient to prove that

t
tin, 1 [ u(e-0gx(n),y(m)ar

t+0* 0

exists. This easily follows from the fact that U(t) 1is a strongly

continuous semigroup and g is smooth. Hence h(xo) is in the

domain of B.

Theorem 3. Let ¢ be a C1 map from a neighborhood of the origin
in X into Y such that ¢(0) = 0, ¢'(0) = 0 and ¢(x) € D(B).
Suppose that as x »~ 0, (M) (x) = 0(|x|9), q > 1, where

(MP)(x) = ¢'(x)[Ax + £(x,9)] - Bd(x) - g(x,9(x)).
Then as x » 0, ||h(x) - ¢(x)|| = o(|x|Y).

The proof of Theorem 3 is the same as that given for the
finite dimensional case except that the extension 6: X - Y of ¢

must be defined so that 6(x) is in the domain of B.

6.3. Examples

Example 1. Consider the semilinear wave equation

Ve * Vet Vex © V * £(V) = 0, (x,8) € (0,%) X (0,®)

(6.3.1)
v=0 at x =0,

EREI - ——
e i b i AR

e R

st i 8 s Al do b
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where f is a C3 function satisfying f(v) = v3 + 0(v4) as
v *+ 0. We first formulate (6.3.1) as an equation on a Hilbert
space

Let Q = (d/dx)® + 1, D(Q) = H2(0,1) n H3(0,1). Then Q is
a self-adjoint operator. Let 2Z = Hé(o,l) x Lz(O,l). then (6.3.1)

can be rewritten as

w = Cw + N(w) (6.3.2)

where

w, 0
Cw = ’ N(W) s
le-wz -f(wl)

Since C is the sum of a skew self-adjoint operator and a bounded

a C3 map from Z into 2.

The eig;;Qalues of C are A = [-1t (5-4n2)1/2]/2-

Ne =D

| ] 1 and all the other eigenvalues have real part less than 0.

The eigenspace corresponding to the zero eigenvalue is spanned by

Q where
qltx) = sin Xx.
0

To apply the theory of Section 2, we must put (6.3.2) into

—_———a

canonical form. We first note that qu = -q, where

operator, C generates a strongly continuous group. Clearly N is




MW‘W : E— _‘

qz(x) = sin x
-1

- e B B

and that all the other eigenspaces are spanned by elements of the

-
‘,
form " sin nx, n > 2, L GZRQ. In particular, all other eigen- -
vectors are orthogonal to qy and q,- Let X = span(ql), f
vV = span(ql,qz), Y = span(qz) ® V*, then Z = X 8 Y. The projection
;‘ P: Z + X 1is given by
5 W, g
P = (w1+w2)q1 (6.3.3)
W
2
where
2 m
W.(x) = 5| w.(®)sin 6 go.
es ,,fojc)x

Let w = sq, +y, s €R, y€Y and B = (I-P)C, then we can write fé
(6.3.2) in the form

$a; = PN(sqq+y) i
(6.3.4) ;
y = By + (I-P)N(sqy+y).

By Theorem 1, (6.3.4) has a centre manifold y = h(s),
h(0) = 0, h'(0) = 0, h: (-6,6) + Y. By Theorem 2, the equation
which determines the asymptotic behavior of solutions of (6.3.4)

is the one-dimensional equation
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sq; = PN(sq1+h(s)). (6.3.5)

Since the nonlinearities in (6.3.4) are cubic, h(s) = 0(53), so

- that
. sl =g " 3 4
s = = J f(s+0(s”))sin '© d®
: 0
5 or
i = ‘% s+ 0sY). (6.3.6)

Hence, by Theorem 2, the zero solution of (6.3.6) is asymptotically
stable. Using the same calculations as in Section 1 of Chapter 3,

if s(0) > 0 then as t » =,

1/2

s(t) = 3 £y e o1y, (6.3.7)

Hence, if v(x,t) is a solution of (6.3.1) with v(x,0), vt(x,O)

small, then either v(x,t) tends to zero exponentially fast or
v(x,t) = #s(t)sin x + 0(53) (6.3.8)

where s(t) is given by (6.3.7).

Further terms in the above asymptotic expansion can be calculated

if we have more information about f. Suppose that f(v) = v3 +
avS + 0(v7) as v > 0. 1In order to calculate an approximation to
h(s) set




(M) (s) = 0'(s)PN(sq1w(x)) - B9(s) - (I-P)N(sq1+¢(5)) (6.3.9)

where ¢: R + Y. To apply Theorem 3 we choose ¢(s) so that
(M) (s) = O(s>). If @(s) = 0(s®) then ‘

Mb(s) = -BO(s) - (I-PIN(sq;) + O(s®)

0
- 3y 53 5
= -M(s) -~ § 379, - F q + 0(s>) (6.3.10)
| .
: where q(x) = sin 3x. If
B
3 o
¢(s) = 2q.8 * BZ qs (6.3.11)

then substituting (6.3.11) into (6.3.10) we obtain

3 e B S y 3 3|0
(M®) (s) = aq,s” + A . LR SR L ; q.
1 g

Hence, if o = 3/4, 8, = 1/32, 8, = 0 then Mo(s) = 0(s%) so by

Theorem 3

1
h(s) = §q2s3 . 312 [o]q53 + 0(s°). (6.3.12)

Substituting (6.3.12) into (6.3.5) we obtain

3 213 S

s = % Rtk B a)ss + 0(57).




v ¢ ’ v 4 4 J o t
¢ g / i CORRYIE we apply our theory to the egusrioy
y y Y £ + { /'( [ vV [(5,t]) ds ]y = [ 0.3
L { Yyyy i = s 4 © XX
With y ¥ #t x = 0,1 snd given iriitial conditions
s
:"n'vA‘I;'. v"l,‘ljl 2 & x5 £ ] "4'“&’3‘111 (‘).",.13) 1S a mOdel for the

PHahsVetee wation af an elastic rod with hinged ends, v being the
bhaheveree deblectiaon and 6§ & tohstant. The above equation has

been studied by Ball 19,61 aad in particular he showed that when

Pe 8% the sern salution ef (6,.3.13) 1a asymptotically stable.

Huwever, in this case the Liearized equations have a ze

Preelvalue and sa (he vate of decay ot solutions depends on the

TO

HEl b leal fevmes tw {LE) the vate ot decay of solutions of (6.3.13)

WAz Faund ustug ventie Manittold theory, Here we discuss

A osmatbl o salutions ot (€. 3.11) when 8 « n% ¢ small.

V2 0 the previous eNample we formulate (6.3.13) as
ditterential Svat ion e write ' forx SPace derivativ
Wb e devivatives bet
A \ * > B k% » e - ™
\ LY s ‘ L\ ¥ i
. - i -
L n
. ’ , - A v
« b :‘\ 5, v
- - 6 - S~ —
L
. -~ ¥ e = 14

the behavior
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Then we can write (6.3.13) as
w =Cw + N(w). (6.3.14)

It is easy to check that C generates a strongly continuous group
on Z and that N is a C” map from Z into Z.
If X 1is an eigenvalue of C then we must have a nontrivial

solution u(x) of

U"" L Bun & (A"')\Z)u = 0
u(0) = u"(0) = u(l) = u"(1) = 0.

An easy computation then shows that A 1is an eigenvalue of C if

and only if

22 = -1+ [1 - antntepn?a?y)l/2,
Let € = ﬂZB + 1. Then the eigenvalues of C are Xn(e), where
A () = -1+ (1-4€11/2, A (&) = -1 - A (€), and all the rest of

the xn(e) have real parts less than zero for € sufficiently

small. The eigenspaces corresponding to A;(€) and A,(€) are

spanned by Q, and q, where

while the eigenspaces corresponding to An(E) for n > 2 are

spanned by elements orthogonal to q; and Q;.




I
{
|
|
|
|
l
I
I
i
{
i
i
i
|
|
l
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Let X = span(ql), V = span(ql.qz), Y = span(qz) ® Vl, then

Z=X®8Y and the projection P: Z + X is given by
W i NP —
p{ 1] - (A1 (E) = A,(€)) 77 (Wy-h, ()W) )a,
‘o

where

1
= 3 [ w.(®)sin ™ do.
j g 3

Let w = $q; * Y, where s € R and y € Y. Then we can write
(6.3.14) in the form

$q) = A (€)sq; + PN(sqp+y)

y = By + (I-P)N(sq1+y) (6.3.15)

€ =0.

By Theorem 1, (6.3.15) has a centre manifold y = h(s,€), |s]| <4

je] < €y Using h(s,e) = O(sz+]€sl), if N,(w) 1is the second

component of N(w) then
3 iy e 2
Nz(sql*h(s,e))(x) i [I S"T 'cos“m8d0)1°s sin mx
+ 0(s4+|essl)
= -s3sin mx + 0(54+|553|).

Hence PN(sql*h(s,E)) = (—53+O(s4+|653|))q1, so that by Theorem 2,

. e AR .+ 74
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the asymptotic behavior of small solutions of (6.3.15) is determined

by the equation

3

S = (e)s - 8%+ o(les®] + |s*)) (6.3.16)

We can now determine the asymptotic behavior of small solutions of
(6.3.14). For 0 < € < §,solutions of (6.3.14) are asymptotically
stable. For -8 < € < 0, the unstable manifold of the origin
consists of two stable orbits connecting two fixed points to the

origin. (See Figure 1)

Problem. For € = 0, show that equation (6.3.16) can be written as

3 5

s = -5° - 357 & 0(57)

4
|4
» B

Y
—— - ——— X £

L AR

Figure 1
Phase Portrait for Small Negative €
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Example 3. Consider the equation

2
u + 2u, - u + a“v + f(u,v) =0
tt t XX (6.3.17)

Voo * 2vt . RES B g(u,v) =0
for (x,t) € (0,m) x (0,) with u=v =0 at x = 0,7, where
f(u,v), g(u,v) have a second order zero at u =v =0, For a = 2,
we show that the linearized problem has two purely imaginary
eigenvalues while all the rest have negative parts. We then use
centre manifold theory to reduce the prbblem of bifurcation of
periodic solutions to a two-dimensional problem.

Let w = (u,v,ﬁ,&)T, then we can write (6.3 17) as
w = Cw + N(w) (6.3.18)

on z = (H2(0,1) n Hy(0,1))% x (L2(0,10)%. Let

If ¥ 1is an eigenvalue of A then A is an eigenvalue of C
where L 2\ + uw = 0 and all the eigenvalues of C arise in
this way. An easy calculation shows that the eigenvalues of C

are given by

A - -1 - o (l-nztia)l/z’ 0 - 1,2’000 .

For a = 2, the eigenvalues of C are A, =i, X, = -i, while all

T

A

o

Sl % e b
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the rest have negative real parts. Also

d
Xe (Re AI(Z)) > 0

so that \l(a) and Yl(a) cross the imaginary axis with non-zero
speed. It is now trivial to apply centre manifold theory to conclude
that for a - 2 small, the behavior of small solutions is

determined by an equation of the form

a =1

s = s + J(s,a) (6.3.19)
1 a

where s € RZ. @ is a real parameter and J(s,a) = 0(52). To

apply the theory in Section 2, Chapter 3, we need to calculate the
quadratic and cubic terms in J(s,0). To do this we need to put
(6.3.18) into canonical form and to calculate the centre manifold
when a = 2. From now on we let a = 2.

On the subspace {r sin nx: r € RA} the operator C can be

represented by the matrix Cn where

Note that the eigenvalues of C are given by the eigenvalues of

Cn for n=1,2,... . To put (6.3.18) into canonical form we

first find a basis which puts C1 into canonical form. Calculations

e ——

TR TN T

e
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show that if
-2 0] 0] -2
0 1 o3 0
Gy * q, = q = q =
1 of ¢ -2 3 -2l 4 4
<}
3] Kl & 3

then Cyq; = -9y, €8, = 434 Cjag = -20; * q,, Cjq, = -q5 ~ 2q,.
Let w = Qz where Q = [ql’q2’q3’q4]’ then we can rewrite (6.3.18)

as

z = Q" lcQz + Q IN(Qw). (6.3.20)

<
Let X = {[51,52,0,0] Vi sy,s, € R}, V = {[O,O,rl,rZ]Tw: T,T, € R},
Y=V®e [Xe V]l where V(x) = sin x. Then Z = X ® Y and the

projection P on X along Y 1is given by

S
w
Pw = 2 ']
0
bl 2 ("
wj(x) = 3 Iowj(e)sxn 040 .,

Let z = [sl,sz,O,O]TV * Y, sy €ER, y € Y, then we can write
(6.3.20) in the form

e

o

v e i

aadls m.'—zn..;&~..a' L

kel b
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™ s + <PQ IN(Qw),9>

(6.3.21)

y = By + (1-P)Q IN(Qw)

where B = (1-P)Q lcQ, ¢ = [1,1,0,0]™v and s = O LI
Theorem 1 (6.3.21) has a centre manifold y = h(s).
From w = Qz we have that w

y - -Zz1 - 224 and Wy = 2z
lat Q7% . (ry,],

- M

F(z) t t Ef=88y = 38,5 25 ~ %)
13 14 1 4 2 3

G(z) trs tos g(-Zz1 - 224, z, - 13)

Suppose that F(z) = Fy(z) + 0(|z|%) and G(2) = 64(2) + 0(Jz|Y
where F3 and F4 are homogeneous cubics. Then if Jl(s), Jz(s)

denote the first two components of <PQ'1N(Qw),¢> on the centre

manifold,

n
2 2 . 4
Jl(s) - IOF3(5151n 0, s,sin 0,0,0)d® + O([s|")

with a similar expression for J,(s). Hence, on the centre manifold

v -1 S Jl(s)

(6.3.22)
1 0 S5, Jz(s)

and we can apply the theory given in Section 2 of Chapter 3. If the

constant K associated with (6.3.22) is zero (see Section 2 of




Chapter 3 for the definition of K) then the above procedure gives
no information and we have to calculate higher order terms.

If F(z) = Fy(z) + Fy(2) + 0(|z]Y) and G(2) - G,(z) +
03(2) + 0(|z|4) where F2 and G2 are homogeneous quadratics
then the calculation of the nonlinear terms is much more complicated.
On the centre manifold 2, = slw + 0(52), z, = SZW + O(sz),
zy = O(sz), and 2, = 0(52). The terms of order s2 make a contri-
bution to the cubic terms in PQ'lN(Qw). Hence, we need to find a

qQuadratic approximation to h(s). This is straightforward but rather

complicated so we omit the details.

Example 4. Consider the equations

c
n

¢ " b * (B1)u ¢+ A%v + 2auv + uly e BA™ 12

= 2 o
Ve = ODv . - Bu - A’y - 2auv - uly - BA"1,2 (6.3.23)

Usyeg st x=0.1,

where A,B,9,D are positive. The above equations come from a
simplified model of a chemical reaction with u + A and v + BA°l

as the chemical concentrations [3,10].

We study (6.3.23) on I = (H%(o,n))z. Set
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[ 42 2 i
D + (B-1) A
dx?
u
W‘[],C' 2
v -B 65 £ - A%
e dx e
L 2 1.2
N(w) = (2Auv + u®v + BA "u“)
-1
then we can write (6.3.23) as
w = Cw + N(w). (6.3.24)

We analyze the situation in which for some value of the para-

meters A,B,9,D, C has two zero eigenvalues such that the restriction
of C to the zero eigenspace has a Jordan block. The bifurcation

of static solutions when C has two zero eigenvalues and the

restriction of C to the zero eigenspace is zero, has been studied
in [21,22].

I
l
On the subspace {r sin nmx, r €IR;} the operator C can be L




represented by the matrix

The eigenvalues of C are given by the eigenvalues of Cn for

noe 12000 We suppose that two of the eigenvalues of C are

negative while all the rest have negative real parts. For

simplicity we assume that the eigenvalues of C1 are zero.

If C1 is to have two zero eigenvalues then

trace(Cl) =B -1 - nzn - AZ - enzn = 0

(6.3.25)
2

det(C,) = A%B - (B-1-12p) (A%+07%D) = 0.

We make the following hypotheses:

(H1) There exists AO,BO,BO,D0 such that (6.3.25) is satisfied
and the real parts of the rest of the eigenvalues of C E:

are negative.

(H2) For A,B,8,D in a neighborhood of AO’BO’BO’DO’ we can

parametrize trace(C;) and det(C;) by |

B s Ji

trace(Cl) = €, det(Cl) = €. (6.3.206)
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The first hypothesis is satisfied, for example, if D0 >0

and

%, = 1, A = "D

2 12
0 or By = (2+7°Dy)°, (6.3.27)

If we vary B and 9 and keep A = Ay, D = Do, then the mapping
(B,8) » (det(Cl), trace(Cl)) has a non-zero Jacobian at B = BO’
0 = 90 if AO,BO,S0 are given by (6.3.27), so by the impliéit
function theorem, (H2) is satisfied. In order to simplify
calculations we assume (6.3.27) from now on.

Let X = {sv: s GIRZ}, Y = X' where ¥(x) = sin Tx, then

Z =X®Y. By Theorem 1, the system

w = Cw + N(w)

€ =0

has a centre manifold h: (neighborhood of X x:mz) + Y, where we

have written € = (el,ez). On the centre manifold, the equation

reduces to
$§ = C,(e)s + N(s¥+h(s,€)) (6.3.28)

T
where s = [sl,sz] and

1
Ni(z) = 2 [ONi(z(e))sin m9de .

We treat the linear and nonlinear parts of (6.3.28) separately.
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If q, = [l,p]T, qQ, = [-p,l]T where p = —A'IBI/Z, then
1 2 0 70
2
Cl(O)q1 = 0 and CZ(O)q2 = (A +B)q1. Let Q = [ql,qZ], then

2

By B e ey e

: 0 A°+B i
& -
Q e, (0)q = :
0 0 i
4
=l £
Let Q °C,(e)Q =T = (t;;) and let :
{
e
; r 1 0 1 0 %
L M(€) = = 5 + 0(¢€). ?
tll tlZ 0 A®+B g
: L3
L 3
Then for € sufficiently small, M(€) is nonsingular and 'f
_ I
1 ¥
,_ r. 0 1 b
.

M(e)Q Te ()M (e) =
-det (T) trace(T)

0 1 0 1 ¥
{; -det(Cl) trace(Cl) € €, f&
@jﬁ by (6.3.26). Let s = QM'l(E)r, then (6.3.28) becomes 'i
f 4 I
i i
. e o3 T | i

r = r + M(E)Q 'N(QM “(€)ry + h(s,€)). (6.3.29) i

€ € 13

1 2 4

—— eaas GED IR D N e
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To check the hypotheses of Section 9 of Chapter 4 we only
need calculate the nonlinear terms when € = 0. Using the fact

that h(s,0) = O(sz), routine calculations show that

M()Q N (0)r¥ + h(s,0)) = [py,p,)TR(r;uT,) ¢ OCIEY] + r, 1Y)

where

Py = g% a+pH1a-p, P, = %% (1+p%) T (14p) (A%+)

rz*arr +a.r

R(ry,rp) = 07y + Gryr, ¢ G

2

Al - 28172, o

a, = ) " 2(A%+B) 1 (83727 24sa-a7 ]y,
’ & 2 = 4.2 ;i
Using (6.3.27), 01 = (m DO) (1-m Do) so that “1 is non-zero
if “ZDO # 1. We assume that "ZDO #« 1 from now on. Note, also

that since 1 + p = -(ﬂZDO)'l, we have that P, is non-zero.
To reduce (6.3.29) to the form given in Section 9, Chapter 4

we make the substitution
o = (I-p,p;'A(e))r. (6.3.30)

Substituting (6.3.30) into (6.3.29) and using the above calculations

we obtain

holl
]
©
+
o5}
—~
©
™
St

(6.3.31)




;
3°F, (0,0) 32F2(0,0)
e T e e ¥ el <o Paller s
1
;
3°F, (0,0)
ag
'

We have already checked that & # 0. For most values of
DO,B is nonzero [B 1is only zero when D0 is a solution of a
certain algebraic equaton]. If B % 0 then we can apply the
theory given in Section 9, Chapter 4 to obtain the bifurcation set
for (6.3.23). If B8 = 0 then the theory given in Section 9,
Chapter 4 still gives us part of the bifurcation set; the full

bifurcation sec¢ would depend on higher order terms.

Remark. If we vary 8 in (6.3.23) the theory given in Section 1]
does not apply since the map (6,v) - evxx is not even defined on
the whole space. However, it is easy to modify the results of

Section 1 to accommodate the above situation. (See, for example,

Exercises 1-2 in Section 3.4 of [30].)
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